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We have performed a series of systematic tests to evaluate quantitatively the effects
of spurious transport in three-dimensional smoothed particle hydrodynamics (SPH)
calculations. Our tests investigate (i) particle diffusion, (ii) shock heating, (i) numer-
ical viscosity, and (iv) angular momentum transport. The effects of various program
parameters on spurious mixing and on viscosity are investigated. The results are use-
ful for quantifying the accuracy of the SPH scheme, especially for problems where
shear flows or shocks are present, as well as for problems where true hydrodynamic
mixing is relevant. In particular, the particle diffusion coefficients we measure can be
used to help estimate the spurious fluid mixing in SPH applications. We examine the
different forms of artificial viscosity (AV) which have been proposed by Monaghan,
by Hernquist and Katz, and by Balsara. Our tests suggest a single set of values for
the AV parameters which are appropriate in a large number of situationd.5,

B~ 1 for the classical AV of Monagham;, ~ g ~ 0.5 for the Hernquist and Katz

AV, anda =~ 8 =~ y /2 for the Balsara AV (wherg is the adiabatic index). We also
discuss how these choices should be modified depending on the goals of the partic-
ular application. For instance, if spurious particle mixing is not a concern and only
weak shocks (Mach numbgrt < 2) are expected during a calculation, then a smaller
value of« is appropriate. Somewhat larger valuesdoand 8 may be preferable if

an accurate treatment of high Mach number shogks10) is required. We find

that both the Hernquist and Katz and Balsara forms introduce only small amounts
of numerical viscosity. Furthermore, both Monaghan’s and Balsara’s AV do well at

1 Current address: Vassar College, 124 Raymond Avenue, Mail Drop 562, Poughkeepsie, NY 12604-05¢
2 Current address: Department of Astronomy, The Ohio State University, 174 West 18th Avenue, Colur
OH 43210.

687

0021-9991/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.
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treating shocks and at limiting the amount of spurious mixing. For these reasons, we
endorse the Balsara AV for use in a broad range of applicatiofi$e99 Academic Press

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a Lagrangian method introduced spe
cally to deal with astrophysical problems involving self-gravitating fluids moving freel
in three dimensions. Pressure-gradient forces are calculated by kernel estimation, dire
from the particle positions, rather than by finite differencing on a grid as in other partic
methods such as PIC (the particle-in-cell method; see, e.g., [1]) or grid-based methods
PPM (the piecewise parabolic method; see, e.g., [2]). SPH was originally introduced
Lucy [3] and Gingold and Monaghan [4], who applied it to the calculation of dynamic:
fission instabilities in rapidly rotating stars. Since then, a wide variety of astrophysic
fluid dynamics problems have been tackled using SPH (see [5, 6] for reviews). In rec
years, these have included planet and star formation [7-9], solar system formation [
supernova explosions [11, 12], tidal disruption of stars by massive black holes [13], lar
scale cosmological structure formation [14, 15], galaxy formation [16, 17], stellar collisio
[18, 19], and binary coalescence [20—25]. The SPH method itself has also undergone i
advances. Most notably, artificial viscosity (AV) has been incorporated [26—30], as w
as powerful algorithms for the calculation of self-gravity including particle-mesh metho
[31] and tree algorithms [32, 27, 33].

We have performed systematic tests of the SPH method. We examine the effect
varying a number of SPH-specific parameters and schemes, including the AV parameter:
number of neighborbly, the choice of evolution equation (energy vs entropy), and the tyy
of advection algorithm. We concentrate on the examination of spurious transport, incluc
the motion of SPH patrticles introduced as a numerical artifact of the SPH scheme. M
applications require a careful tracing of particle positions, and in these cases it is esse
that the spurious diffusion of SPH particles is small. For example, SPH calculations ¢
be used to establish the amount of composition mixing during stellar collisions [34, :
19], which is of primary importance in determining the subsequent stellar evolution of t
merger remnant (see, e.g., [35]). In Section 3, we measure particle diffusion coefficie
which allow one to estimate the extent of spurious fluid mixing in SPH applications.
Section 4, we then apply these diffusion coefficients to a simple self-gravitating systern

We present a comparison of three different AV forms, namely those of Monaghan [2
Hernquist and Katz [27], and Balsara [29]. The tests performed include a version of
Riemann shock-tube problem with periodic boundary conditions (Section 5). We also st
and measure numerical viscosity, both in the context of a pure shear flow constructed
periodic box with slipping boundary conditions (Subsection 6.1), and in a rapidly, diffe
entially rotating, self-gravitating system (Subsection 6.2). Numerical viscosity is importe
since it causes the spurious exchange of momentum and angular momentum among
layers. For each of the AV forms, we investigate how the AV parameters can be adjus
to achieve an accurate description of shocks, while still controlling spurious mixing a
shear viscosity. It is the tests of Sections 5 and 6 upon which we base our compariso
the various AV forms.

All of our results are summarized and discussed in Section 7. Other tests of SPH incl
those by Hernquist and Katz [27] and Steinmetz andl&t[36]. In addition, comparisons
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between SPH and Eulerian codes have been presented in the literature in a variety of cor
stellar collisions [37], cosmology [38], rotating stars [39], coalescing neutron stars [/
circumstellar disks [9], and shock-tube tests [30].

2. NUMERICAL METHOD

Many different implementations of SPH exist (e.g., [31, 27, 41]), and in this section
give a brief description of the more popular schemes.

2.1. Density, Pressure, and Entropy

An SPH particle can be thought of as a Lagrangian fluid element. Associated with par
i is its positionrj, velocityv;, and massn;. In addition, each particle carries SPH-specifi
parameters including a purely numerical “smoothing length$pecifying the local spatial
resolution. An estimate of the fluid densityratis calculated from the masses, positions
and smoothing lengths of neighboring particles as a local weighted average,

=y MW, )
j

where the symmetric weighi&f; = W;; can be calculated from the method of Hernquis
and Katz [27], as

1
W = SIWCr =1 B+ W = 1l bl @)

HereW(r, h) is a smoothing (or interpolation) kernel, for which we use the second-or
accurate form of Monaghan and Lattanzio [41],

RS (R R
W = —5 32— ()] 1<f<2 ®)
0, L>2

Depending on which evolution equation is integrated (see Eqgs. (20) and (21) bel
particlei also carries either the parametgrthe local internal energy per unit mass Ay
the entropy variable, a function of the local specific entropy. Arbitrary equations of s
(e.g., adiabatic, isothermal, even equations of state for metals and rocky materials; cf.
are permitted in SPH. The calculations presented in this paper use, unless otherwise |
polytropic equations of state with=5/3, appropriate for an ideal monatomic gas. Th
pressure at; is therefore calculated either as

p=( — Doy, 4)
or

p=Ap. (5)
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We define the specific entropy of particléo be

1 pi )
s = | , 6
SE T n(piy(y -1 ©

and the total entropy of the systeé®s= ) ;m;s . Equation (6) is a definition of convenience:
we refer to the quantitg as entropy, even though it differs from the true thermodynami
entropy (which depends on the composition of the fluid being represented). Although b
s and the true thermodynamic entropy are conserved in adiabatic processgswitish
arises naturally when studying the dynamical stability of self-gravitating fluids.

2.2. Dynamic Equations and Gravity

Particle positions are updated either by
f'i =V, (7)

or the more general XSPH method

fi=Vi+EzmjV'_VIWij, (8)
J- Pij
where pi; = (pi + pj)/2 and € is a constant parameter in the range<&<1 [28].
Equation (8), as compared to Eqg. (7), changes particle positions at a rate closer to the |
smoothed velocity. The XSPH method was originally proposed as a means of decrea
spurious interparticle penetration across the interface of two colliding fluids.
The velocity of particlé is updated according to

Vi — ai(Gra\/) + a,-(SPH, (9)
wherea(®™ is the gravitational acceleration and
(SPH __ | P Pj N
g™ =->"m, F+? + I05j |V W . (10)
j ! J

The AV termIl;; (see Subsection 2.3) ensures that correct jump conditions are satisf
across (smoothed) shock fronts, while the rest of Eq. (10) represents one of many pos
SPH-estimators for the acceleration due to the local pressure gradient (see, e.g., [43])

To provide reasonable accuracy, an SPH code must solve the equations of motion
large number of particles (typicalld > 1000). This rules out a direct summation method
for calculating the gravitational field of the system, unless special purpose hardware <
as GRAPE is used [17, 44]. In most implementations of SPH, particle-mesh algorith
[31, 20, 45] or tree-based algorithms [27, 46] are used to calculate the gravitational acce
ationsai(Gra"). Tree-based algorithms perform better for problems involving large dynam
ranges in density, such as star formation and large-scale cosmological calculations. For
lems such as stellar interactions, where density contrasts rarely exceed afs@er 10°,
grid-based algorithms and direct solvers are generally faster. Tree-based and grid-b
algorithms are also used to calculate lists of nearest neighbors for each particle exact
in gravitationalN-body calculations (see, e.g., [1, 47]).
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Our SPH codes are slightly modified versions of codes originally developed by Rasio |
with implementations similar to those adopted by Hernquist and Katz [27]. Our 3D c
has the option of including gravity and calculates the gravitational field by a particle-m
convolution algorithm which uses a grid-based FFT solver [1, 49]. More specifically,
smoothed density sets the values of the source term for Poisson’s equation at grid pi
The FFT-based convolution algorithm then solves for the gravitational potential on 1
grid. Forces at grid points are obtained by finite differencing, and then interpolated c
the particle positions. We have found that, for our tests involving self-gravitating fluids
is relatively easy to make the gravity accurate enough that it is not a significant sourc
error. Therefore, the results of this paper can be applied to any SPH code regardless
gravitational scheme.

2.3. Artificial Viscosity

We now present three commonly used AV forms which are tested in this paper
Subsections 7.2 and 7.3 we will discuss the results of these tests, while in Subsectio
we discuss which of the AV forms performs best in which circumstances.

A symmetrized version of the AV form proposed by Monaghan [28] is often adopted

—apij Gij + B

Hij =
Lij

11)

wherea andg are constant parametets, = (G +¢j)/2 (with ¢ = (ypi/pi)Y/? being the
speed of sound in the fluid at), and
(Vi=Vvj) - (ri=rj) H ) (F —
i = {hij(“’i:'jz/hﬁviﬂz) it (vi —vj) - (ri—rj) <0 (12)

0 if (v —vj)-(ri—rj)=>0

with h;; = (h; +h;)/2. We will refer to viscosities of this form as the “classical” AV. This
form represents a combination of a bulk viscosity (lineauin) and a von Neumann-—
Richtmyer viscosity (quadratic ip;;). The von Neumann—Richtmyer AV was initially
introduced to suppress particle interpenetration in the presence of strong shocks. Oul
will demonstrate that, for constamtandg, Eq. (11) performs best whern~ 0.5, 8 ~ 1, and
n®~ 1072, although, as discussed in Subsection 7.4, these choices should be adjustec
the particular goals of an application. Morris and Monaghan [30] have recently implemel
Eq. (12) with atime varyingcoefficiente, and withg = 2«.

Another form for the AV, introduced by Hernquist and Katz [27], calculdigsdirectly
from the SPH estimate of the divergence of the velocity field,

G+ A if (vi—vp) - —r1)) <0
my = |7 +P1 if(vi—vp-(ri—rj < 13
0 if (vi —vj)-(rj —rj) >0,
where
apicihi |V - Vi + Bpih?|V - v|2 if (V-v)j <0
G = . (14)
0 if (V-v)i >0
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and

1
(V- v) :;ij(vj_vi)'vivvij- (15)
b

We will refer to this form as the HK AV. Although this form provides a slightly less accurat
description of shocks than Eq. (11), it does exhibit less shear viscosity. Our tests show
a~ B~0.5is often an appropriate choice for the HK AV (see Subsection 7.4).

More recently, Balsara [29] has proposed the AV form

I = (% + p—i) (—amij + Buy), (16)
I j
where
Vi=vyp)-(ri=ry fi+fj : N
iy = 4 WA= I 2 '.f Vi =vp) - (ri—rj) <0 a7
0 |f(vi—vj)-(ri—r,-)20.

Here f; is the form function for particlé, defined by

_ IV -vji
IV -Vl + 1V x V| +7'c/h;,’

i (18)
where the factom’ ~1074-10"° prevents numerical divergence&y -v); is given by
Eqg. (15), and

(V x V)i :%ij(vi—vj)xviwij. (19)
b

The function f; acts as a switch, approaching unity in regions of strong compressi
(IV -v|; > |V x v|;) and vanishing in regions of large vorticity;{ x vl|j > |V -v|;). Con-
sequently, this AV has the advantage that itis suppressed in shear layers. Throughout th
perwe use’ = 10~°, a choice which does not significantly affect our results. Note that sinc
(pi /o7 + Pj/p$) ~2¢5 /(ypij), EQ. (16) resembles Eq. (11) Whi - v[i >> |V x V[, pro-
vided one rescales the and 8 in Eq. (16) to be a factor of /2 times thex and g in
Eqg. (11). We will show thatt ~ g ~ y /2 is often an appropriate choice for the Balsara AV.

2.4. Thermodynamics

To complete the description of the fluid, eithgror A; is evolved according to a dis-
cretized version of the first law of thermodynamics,

du 1 pi pj
d—tlzéjzmj(p—ilz-l-p—;z-i-nij)(vi_Vj)'ViVVijv (20)
or
dA  y -1

W_Fz:mj ITj (vi —Vvj) - ViW;. (21)
0Oi j
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We call Eq. (20) the “energy equation,” while Eq. (21) is the “entropy equation.” Whi
equation one should integrate depends upon the problem being treated. For instance
modynamic processes such as heating and cooling [14] and nuclear burning [12] ce
incorporated more easily into the energy equation.

The derivations of Egs. (20) and (21) neglect the time variatiohn, oTherefore if we
integrate the energy equation, even in the absence of AV, the total entropy of the systen
not be strictly conserved if the particle smoothing lengths are allowed to vary in time; if
entropy equation is used, the total entropy would then be strictly conservedhiyher0,
but not the total energy [48, 50]. For more accurate treatments involving time-depen
smoothing lengths, see Nelson and Papaloizou [51, 52] and 8eahd53].

There are many other equivalent forms of the basic SPH equations which reduce t
correct fluid equations in the limil — oo, hj — 0. However, most of them will satisfy
their associated conservation equations only approximately, i.e., up to errors which
to zero only in this limit. In contrast, the above equations have the virtue of consen
energy and momentum exactly, independent of the number of particles used, as long
smoothing lengths are held fixed (e.g., [48]). Of course, in the numerical solution, er
will still be introduced by the time-integration scheme.

2.5. Integration in Time

For a stable time integration scheme, the timestep must satisfy a Courant-like cond
with h; replacing the usual grid separation. For accuracy, the timestep must be a s
enough fraction of the system’s dynamical time. We calculate the timestep as

At =Cy Min(Atl, Aty), (22)

where the constant dimensionless Courant nuniaetypically satisfies A < Cy < 0.8,
where

Aty = Miin(hi Jo)Y?, (23)

and where forAt, we use one of two types of expressions, the simplest being

. h;
Atz = Mi|n (m) . (24)

In the presence of strong shocks, equations such as (24) can allow for fairly large ent
changes in a single timestep wh€g is large. This problem can be eliminated by usin
smallerCy, or by adopting a more sophisticated expression introduced by Monaghan [

. hi
Atz =Min (q + 120G + 1.28 Max | ij |>' (29)

If the Hernquist and Katz AV (Eq. (13)) is used, the quantity Mgayx; | in Eq. (25) can be
replaced byh; |V -v|; if (V-v); <0, and by O otherwise. By accounting for Av-inducec
diffusion, thea and g terms in the denominator of Eq. (25) allow for a more efficient us
of computational resources than simply using a smaller val@oin this paper, we will
label the timestep routine by an S (for “simple”) when we implement Egs. (22), (23), ¢
(24), and by an M (for Monaghan) when we implement (22), (23), and (25).
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The evolution equations are integrated using a second-order explicit leap-frog sche
Such alow order scheme is appropriate because the dominate source of error for the evol
is the noise in particle interactions due to numerical discreteness effects. Other detai
our implementation, as well as a number of test-bed calculations using our SPH code
presented in Rasio and Shapiro [54, 20].

2.6. Smoothing Lengths and Accuracy

The size of the smoothing lengths is often chosen such that particles roughly main
some predetermined number of neighbhifs. Typical values ofNy range from about 20
to 100. If a particle interacts with too few neighbors, then the forces on it are sporadic
poor approximation to the forces on a true fluid element. In general, one finds that, for gi
physical conditions, the noise level in a calculation always decreasesNyhisrincreased.

At the other extreme, large neighbor numbers degrade the resolution by requiring un
sonably large smoothing lengths. However, higher accuracy is obtained in SPH calculat
only whenboththe number of particleBl andthe number of neighborisy are increased,
with N increasing faster thaNy so that the smoothing lengthsdecrease. Otherwise (e.g.,
if N is increased while maintaininy constant) the SPH methodiisconsistenti.e., it
converges to an unphysical limit [48]. The choiceNyf for a given calculation is therefore
dictated by a compromise between an acceptable level of numerical noise and the de
spatial resolution (which isch 1/N,%‘/d in d dimensions).

3. SIMPLE BOX TESTS

3.1. Measuring SPH Particle Diffusion

Simulations of a homogeneous volume of gas, at rest and in the absence of gra
provide a natural environment to examine spurious diffusion of SPH particles. In the id
simulation of a motionless fluid, no SPH particles would move, and the thermodynar
variables would remain constant. However, an SPH system always contains some lev
noise, which leads to spurious motion of particles even in the absence of any bulk flow

In order to model such a system, we introduce periodic boundary conditions in a cub
box, adopting the standard technique of molecular dynamics (cf. [55]): whenever an S
particle leaves the box, itis reintroduced with the same velocity vector on the opposing f
directly across from where it exited. Particles with smoothing kernels extending beyc
a side of the box can have neighbors near the opposing side, once periodicity is te
into account. More precisely, particjehas particle as a neighbor if there exists integers
k, I, andm such that the positiorx(+ kL, y; +IL, z +mL) is within a distance &; of
(Xj, Yj, z;), whereL is the length of the box. This allows particles near a corner of the bc
to interact with image particles from any of the other seven corners. Unless otherwise ng
the calculations presented in this section employ equal mass particles, all with the s:
time-independent smoothing lendthchosen such that the average number of neighbol
Ny is 20, 32, 48, or 64. The total number of partichésn the box is unimportant, as long
as itis large enough that surface effects can be neglected. To ensure this, we always ct
N such thatL/h = 16.

For the diffusion tests of this section, the natural units are givem¥y; =1, wheren
is the number density of SPH particles ands the local sound speed. With this choice,
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velocities are in units af;, distances are in units af %/3, and times are in units of /3¢ 1.

In practice, we implements =1 by choosing the entropy variable= p'~" /y. Further-
more, the mass of the particles is chosen such that the cubical box contains unit r
M = Nm=1. Since the local number density and sound speed are known in any ¢
calculation, these units make our results applicable to many contexts.

After positioning the particles on a regular lattice and assigning their velocities (w
zero net momentum), we allow the system to evolve, without AV. Although each S
particle represents a fluid element with a certain temperature and density, the SPH par
themselves have their own numerical “temperature” (due to the particle velocity dispers
and number density. While there is an obvious correlation between the number densi
the SPH particles and the density of the gas being represented, no such correlation
between the numerical temperature of the SPH particles and the physical temperatt
the gas being simulated. Regardless of the initial velocity distribution chosen, the veloc
ultimately settle into an equilibrium Maxwell-Boltzmann distribution (see Fig. 1), al
we then begin to study particle diffusion. We use the root mean square particle velc
vrms t0 quantify the system’s noise level, or numerical temperature. We have also found
the velocity distribution in real calculations tends to be roughly a Maxwellian centered on
local smoothed velocity. The energy exchange which causes thermalization is due ti
strong coupling between neighboring particles through Eq. (10).

250

200

150

N(v,)

100

50

FIG. 1. The number of particledl (vy) in velocity bins of width 0001c, for the equilibrium state in a typical
simple box test, where, is the sound speed. Ti= 23 particles interacted withly ~ 64 neighbors and began
in a simple cubic lattice configuration with noise artificially introducetl-at0. The solid line shows the best fit
Maxwellian, corresponding te,s = 0.404, once the system has reached equilibrium. Deviations from this b
fit are consistent with statistical fluctuations.
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The level of diffusion is quantified as follows. Once the velocity distribution has settle
into an equilibrium Maxwellian, we record the positions of all particles. Since ideally tt
particles would not move far from their initial positions, it is then easy to monitor the me:
square spurious diffusion distant®eas a function of time (properly accounting for particles
which cross the faces of the box). At late times the mean square deviaiiwreases at an
nearly constant rate, so that the system obeys the usual diffusion egifatiddt, and the
diffusion coefficientD = ds§?/dt, evaluated at late times, is easily measured. (In molecul:
dynamics, the diffusion coefficierd is sometimes defined to be a factor of six smallel
than in our definition.) As an example, Fig. 2 shos¥sandds?/dt for a system with an
equilibriumuvyms= 0.069; it is clear thatls?/dt is essentially constant at late times, and we
measureD = 0.024.

Figure 3 shows the diffusion coefficieriisfor variousv,ms and forNy = 20, 32, 48, and
64. Not surprisingly, spurious diffusion increasesvag increases. Note that, for a given
Ny, there is a critical noise level below which the diffusion coefficients essentially
zero. In this regime, the SPH particles settle into a regular lattice and oscillate around t
equilibrium positions, and we say the system has “crystallized” (see Subsection 3.2). Tt
seems to be a crystallization point for all the curves at some critical velocity dispers
ver > 0. The trend is fop,, to decrease ady increases. During the dynamical phase of rea
applications, AV typically keeps the noise level low enough that the numerical temperat
is at most slightly above that required for crystallization.

(2]

0.5

a2

L A I ) B B B

C1l v v by vy v v v o vl by by

| 1 1 1 ' 1 1
20 40
t [n71/% o]

)

FIG. 2. The mean square deviatidA and slopeds?/dt as a function of time after an equilibrium particle
velocity dispersior,s=0.069c; has been reached in a typical simple box test With=48 and no AV. At
late times, the mean square deviatidrincreases approximately linearly with time, and we define the diffusion
coefficientD as the slope of this line. Units are discussed in Subsection 3.1.
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FIG. 3. The diffusion coefficienD as a function of the root mean square velocity dispersjqfor various
neighbor numberbly, as measured by simple box tests in which the SPH particles began on a simple cubic la

The diffusion coefficient is not always a unique functionNy§ and vys, but can also
depend on the history of the SPH particles. To demonstrate this we started the particl
various types of lattices. Figure 4 shows the measured values of the diffusion coeBianent
the crystallization regime for systems of particles which began in either face centered c
(dashed lines) or a simple cubic (solid lines) configurations. There is a clear dependen:
the system’s history in this regime, making it impossible to define a precise crystalliza
velocity dispersion. Note that all of the data points in Fig. 4 have a small diffusion coefficie
D < 0.025. Well above the crystallization noise level (that is, outside of the region displa
in Fig. 4) the diffusion coefficient is largely independent of initial conditions, that is, the
is negligible history dependence for sufficiently laiggs.

The diffusion coefficients shown in Figs. 3 and 4 are measured while integrating
entropy equation (21) with a Courant numii&y = 0.4 and with the S timestep algorithm
(see Egs. (22), (23), and (24)). However, measurements which use the energy equatio
or different Courant numbers, or both, give similar coefficients, provided only that
Courant number is small enough that the integration routine is stable.

3.2. Lattices of SPH Particles

By experimenting with various lattice types as initial conditions in the simple box tes
we have found that not all equilibrium configurations of SPH particles are stable. For
ample, for neighbor numbers in the range we explored(B8, < 64), simple cubic lattice
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0.025

0.02

0.01

D [n12 ¢]g

0.005

FIG. 4. The diffusion coefficientD near crystallization. Conventions are as in Fig. 3.tAt0, the SPH
particles began on either a simple cubic lattice (data points connected by solid lines) or a face centered
lattice (data points connected by dashed lines). In this regibnleas an obvious dependence on this system’s
history.

configurations are unstable to perturbations, while other lattice types, such as hexag
close-packed, are stable. If the particles begin motionless and slightly perturbed from e
librium simple cubic lattice sites, they achieve a non-zero noise level and readjust their
sitions to a different, preferred lattice type (see Fig. 5). The instability develops more slo
for smallerCy, but it cannot be avoided altogether. Although the introduction of AV sug
presses these instabilities, AV is almost always turned off during the relaxation calculati
necessary to produce initial conditions for real dynamical simulations. Therefore, start
relaxation simulations in a stable lattice structure would avoid unnecessary phase transit

For a few of our simple box tests, we allowed the smoothing lengths vary both in
time and in spaceyithoutincluding the corrections in the evolution equations describe
by Nelson and Papaloizou [51, 52] and Seenbal.[53]. The system'’s behavior is greatly
affected: there is a secular, spurious increase in the total eBegynost all of this spurious
energy is kinetic. If the AV is active during such runs, energy conservation is much bet
however, the error then emerges as a spurious entropy increase (see Fig. 6). The AV r
Fig. 6 usedr =1, 8 = 2,2 = 0.01, and the classical form of AV; both runs g = 0.8 and
an initial Maxwell-Boltzmann velocity distribution with a velocity dispersighRs=0.107.

In many SPH applications, shocks play an important role in the dynamics. Therefc
understanding how various AV schemes affect the level of spurious diffusion is essen
A uniform SPH gas isiot an appropriate arena to study this effect, since the AV quickl
solidifies the particles into a lattice structure. In a calculation with AV but without shocl



TESTS OF SPURIOUS TRANSPORT IN SPH 699

or shear, the diffusion coefficiem is always essentially zero (see Figs. 7 and 8), sinc
diffusion occurs only as a transient.

We can derive approximate analytic expressions for the artificial viscous dissipa
timescale by dimensional analysis on the AV term in Eqg. (10). Here we focus on
classical AV (Eq. (11)); in Subsection 6.2 we will analyze all three AV forms in a differe
context. Beginning with Eq. (12), we note that sifige- r;| ~ h;; we haveu;; ~ Av, where
Av is atypical relative velocity of neighboring particles. If, in the vicinity of partiélesd
j, the sound speed 5 and the density ig, then Eq. (11) gives uBlj; ~ —aAvcs/p if
BAv K aCs (asis typically the case in the absence of shocks). If the local number densit
particles isn, then a typical particle mass; ~ p/n, and|V;W;| ~n/(hNy). Combining
these expressions, we find that the acceleration of paitihle to the AV is

. aCsAv
b = ‘—Z m; Iy Vil | ~ 172 (26)
j N

J

where we have assumed that the sum dvgrterms in Eq. (10) scales ad;,{,/z since there
is no preferred direction fow; W;.

The artificial viscous dissipation timescalés then just/v”Y, wherev is a typical par-
ticle velocity. For the simple box tests we have Av ~ vyns, SO that the viscous timescale
is

12 1/3 \,5/6
T~ hNy _(2 / —NN/ n~13¢;1 (27)
oCs 327 o s

Our numerical results agree well with this simple expression.d=erl and Ny = 32,
Eq. (27) gives a timescale~ 6n~Y/3c_ 2, which is approximately the time it takes to form
a lattice (.e. the timescale on which the kinetic energy drops to zero) in the case prese
in Fig. 7. Although the timescale depends on bithand the AV, it is always quite short:
typically just a few sound crossing times between neighboring SPH particles.

4. POLYTROPE TESTS

Applications of SPH often involve self-gravitating systems with significant density g
dients. The results of our simple box tests can be applied to such calculations, which we
demonstrate by considering a set of equilibrinm 1.5 polytropes (spherical hydrostatic
equilibrium configurations witlp = constx p*%") all with massM and radiusR, but mod-
eled with various total numbend of equal mass particles and neighbor numhégs In
this section, all calculations implement the simple timestep routine given by Egs. (22)—
and have no AV. The natural units are given®y= M = R=1, so that consequently the
unit of time is(R%/ G M)¥/2,

We relax the polytrope to equilibrium by applying an artificial drag force which oppos
motion for 20 time units. We then remove the drag force and record the particle positi
Ideally, the particles would remain stationary. However, as expected from the result
Subsection 3.1, these particles spuriously diffuse from their starting positions, and
diffusion is easy to monitor. By periodically noting the particle velocity dispersigg,
we can apply the simple box test results to get an “instantaneous” value for the diffu:
coefficientD by interpolating between data points in Fig. 3. In this way, we estimate t
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FIG.5. This sequence of cross-sectional slabs, each of thickness1.02n~/3, in a periodic box of dimen-
sion 193 x 19n~3 x 19n~/3 demonstrates the instability of a simple cubic lattice. (a} At0 the N = 19
equal mass SPH particles, each witly ~ 32 neighbors, are initially motionless with only minuscule devia-
tions (due to numerical roundoff errors) from the unstable equilibrium positions of a simple cubic lattice. (b)
t = 190n~Y3c;* the particles are in the process of shifting their positions. (d) BB8~*3c;* the particles have
settled into a new, stable lattice structure.

mean square displacemeitby a simple, numerically evaluated integral,

8% = /D(t)dt, (28)

and then compare this estimation to the actual, measured mean square displacement.

Figure 9 shows, as a function of time, the mean square spurious displacement for
innermost 6400 patrticles in an= 1.5 polytrope modeled wittN = 13,949 particles, each
with Ny = 48 neighbors on average. We do not track the particles of the outer layers he
since they are subject to an effect which we do not attempt to model: when such a par
diffuses outward beyond the surface, gravity pulls it back, making the actual diffusi
distance somewhat smaller than estimated. For those particles which always remain ir
the surface, gravity is everywhere balanced by pressure gradient forces, so that the re
diffusion is essentially the same as in our simple box tests. The usual advection sch
Eq. (7) was used for the calculation presented in the top frame of Fig. 9, while the XS
Eq. (8) withe = 0.5 was used in the bottom frame. The estimated mean square displacen
(dashed curve), as calculated from Eq. (28), agrees well with the actual square displace
(solid curve). To estimate the displacement in the XSPH calculation, the root mean sqt
of the right hand side of Eq. (8) was used in placegf, when determining the diffusion
coefficientD. The Courant numbeZy = 0.8 and the simple timestep routine determine the
integration timesteps for both cases.
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FIG.6. Theinternal energy, kinetic energyT, total energyE = U + T, and entrop\S of the N = 20° equal
mass particles interacting witNy ~ 64 neighbors for a calculation without AV (solid curve) and a calculation
with AV (dashed curve). In contrast to the previous simple box tests, the smoothing lapgtesallowed to vary.
The particles began on a simple cubic lattice with a Maxwell-Boltzmann velocity distribution.
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FIG. 7. The mean square deviatiéA and root mean square velocity,s as a function of time foN = 16°
equal mass SPH patrticles witly ~ 32 in a typical simple box test. Here the AV is given by Eq. (11) wita 1,
B =2andp?=0.01. The particles begin in a simple cubic lattice with a Maxwell-Boltzmann velocity distribution
The AV drivesu,ns to zero, so that the mean square deviasibapproaches a constant and the diffusion coefficient
D =ds2/dt becomes zero.

702



T T T I T T T T T T T T T T T
5L . . . _
;C: O - . . . |
S . .. . . T
5 . . . . _

i1 1 1 | 1 1 1 i1 ; 1 1 1 1 I il 1 1

-5 0 5
x [n-1/3]

FIG. 8. A cross-sectional slab of thickneasz = 0.6n~/3 of the final particle configuration for the simple
box test presented in Fig. 7. There are clear dislocations separating the different lattice orientations. The in
noisy system has been quenched, or “frozen,” into a crystal by the AV so quickly that the SPH particles dic
have opportunity to settle into a single orientation.
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FIG. 9. The estimated (dashed curve) and actual mean square displacement (solid curve) for the inne
6400 particles in an equilibrium= 1.5 polytrope of mas$/ and radiusR modeled withN = 13949 equal mass
particles andNy =~ 64. For the top frame Eq. (7) is used to update particle positions, while in the bottom fra
Eq. (8), the XSPH method, is implemented.
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The slight differences between estimated and actual displacements arise because c
interpolating to obtairD and because our diffusion coefficients are only approximate in tt
crystallization regime (due to history dependence). Since the SPH particles are melting
of their crystalline phase aroumd- 10, our values fob are overestimated then. The XSPH
advection method does indeed diminish the amount of spurious diffusion: the fnaDy)
mean square displacement for the XSPH calculation is nearly one fourth of the value ft
the simple advection scheme. However, one must be careful when using XSPH: using
large of are can cause certain modes to become numerically unstable. For instance, for
extreme case of =1 we are not able to evolve an equilibrium= 1.5 polytrope without
the integration becoming unstable.

Figure 10 showsAE/E, (v/cs)mms, ands?/R? att = 25 for a set of calculations with
Cn =0.8 and variousNy . Here then = 1.5 polytropes are modeled by eithir= 30,000
particles (circular data points) di = 13,949 particles (square data points). For a givel
Ny, the N =30,000 models always have larger accumulated error$\ &s increased,
one must also increasdy in order for the SPH scheme to remain accurate. Althoug
increasingly largeNy results in increasingly smaller errors, this does not mean one shot
strive to use as large a value filg as possible. Largdly yields large smoothing lengths
and hence poor spatial resolution. The optifNgl must be determined by a compromise
between the competing factors of accuracy and resolution and depends on the parti
application. Nevertheless, we can place very loose constraints on how fast the dyimal
should be increased &is increased. From Fig. 10 we see that in going fildrae: 13,949
to N = 30,000 we need to increadl, by at least (very roughly) 15% in order to prevent the

III|III|IIIIIII|II!|IIIIHIlIIII|[III|IIII!IIII|III|IllllHllllllllllll']ll
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FIG. 10. The fractional spurious change in total enel§¥/E, (v/Cs)ms @and the mean square diffusion
distances? as a function ofNy evaluated at a timé=25(R®/GM)¥2 during calculations of an equilibrium
n=15 polytrope. Circular data points correspond to a polytrope modeled Mith30,000 particles, while
square data points correspond to those Witk 13,949 particles.
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FIG. 11. Histogram of the average SPH particle mass in five radial bins for the initial configuration
(dashed curve) anid= 80(R%/ G M)/ configuration (solid curve) during the evolution of an equilibrinme 1.5
polytrope of mas# and radiusR. This calculation employ8l = 13,949 particles wittNy ~ 64, Cy =0.8, the
simple timestep routine, and no AV.

errors fromincreasing. This corresponds to a scalingx N with 0.2 < g < 1, assuming a
power-law relation. The upper limit of 1 apstems from the requirement that the smoothin
lengths must decrease Bsand Ny increase.

SPH calculations sometimes use particles of unequal mass so that less dense regio
still be highly resolved. Unfortunately, the more massive particles tend to diffuse to
bottom of the gravitational potential more so than less massive ones. In other words,
particle has a preferred direction to diffuse, and in a dynamical application this direci
can be continually changing. As an example, we evolved an equilibmis.5 polytrope
in which the SPH patrticles initially in the envelope were, on average, heavier than thos
the core. Over the course of the calculation, the heavier particles settled to the core \
the lighter particles tended to the envelope (see Fig. 11). Such behavior makes spL
diffusion more difficult to estimate in calculations which use unequal mass particles.

5. PERIODIC SHOCK-TUBE TESTS

Since the simple box tests of Section 3 are helpful only for calculations without AV, we t
now to a periodic version of the 1D Riemann shock-tube problem of Sod [56], a standarc
of hydrodynamic codes and AV schemes containing many of the same qualitative fea
as real applications which involve shocks. The physical setup is as follows.

Initially, fluid slabs with constant (and alternating) dengitgnd pressure are separated
by an infinite number of planar, parallel, equally spaced interfaces. We define the un
length to be twice the distance between adjacent interfaces, and yettglane coincide
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with one of these interfaces, so that

0 =p, p=p if-3<x=<0

p=p, PpP=p fO<x=<i

(29)

wherep, pi, or, and p; are constants specifying the density and pressure of the slabs
the “left” and “right” of x = 0. Pressures and densities faf > % are given by repeatedly
stacking the thermodynamic slabs described by Eq. (29) along-#xés to infinity, hence
the nameperiodic shock-tube tests. At=0 the interfaces are removed andpif# pr, a
shock wave moves from the high pressure material into the low. A rarefaction wave &
originates at each interface, propagating in the direction opposite to its corresponding sh
Before the initial collision of shock waves from adjacent interfaces, regions of five differe
thermodynamic states coexist and the entropy of the fluid increases linearly with time
quasi-analytic solution can be constructed for these early times using standard metl
(see, e.g., [67]) and is presented in detail by Rasio and Shapiro [54].

5.1. Low Mach Number Cases

For the first set of shock-tube calculations we consider, the fluid slab to the left of the in
face atx = O initially has densityy = 1.0 and pressurp, = 1.0, while on the righp, = 0.25
andp, =5/2%3 =0.12402. Consequently this box contain€Zb units of mass:.8 on the
leftand 0125 on the right. An adiabatic equation of state is used with5/3, so that the en-
tropy variableAequals 1.0 onthe leftand 1.25 on the right. From Eq. (6), the initial entropy
each of the periodic cells is thig=1.5[0.5In(1.5) + 0.125In(1.5 x 1.25)] = 0.4220. For
these initial conditions, the initial shock waves have a relatively low Mach nuiberl.6.

In these units, the speed of sound in the initial left hand slalp-s(y pi /o) Y? = y/2, and
the unit of time is thereforg /2L /c, whereL is the length of a periodic cell (our unit of
length).

Employing the classical AV of Eq. (11), we obtained a good representation of the she
with our 1D code by using = g = 1 andy? = 0.05. The smoothing lengthof theN = 2500
equal mass particles was constant and chosen such that the particles woulhhadé
neighbors on average. Our 1D code integrates the energy equation and uses the Mon:e
timestep routine witlCy = 0.2. Figure 12 shows the density and velocity profiles as give
by the quasi-analytic solution (solid curve) and our 1-dimensional code (dotted curve
a timet =0.15. As expected, discontinuities are smoothed over a few smoothing lengt
Figure 13 shows the entropy (see Eg. (6)) given by our 1D SPH code (dotted curve), wt
nearly matches the quasi-analytic solution (solid curve).

The above calculation helps establish the accuracy of our 1D code, but does not asse:
accuracy of a 3D calculation, where the much smaller number of particles per dimens
leads to a reduced spatial resolution. Furthermore, numerical errors, including spuri
mixing, are artificially reduced for motion with only one degree of freedom. We test our 2
code with the same physical problemt at 0, slabs of fluid with alternating thermodynamic
states are separated by equally spaced planar interfaces perpendicularaaighd eriodic
boundary conditions are imposed on all six sides of a cube with facesat, y=+1,
andz= :I:%. We consider cases only with a constant smoothing lehgthl, and, unless
otherwise stated, we integrate the entropy equation.

Our calculations with the 3D code ude= 10* equal mass particles. All the particles
initially in the left hand slab have the same smoothing length, smaller than the smoott
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FIG. 12. Density and velocity profiles in a shock-tube test with Mach nuribler 1.6 as given by the quasi-
analytic solution (solid curve) and our 1-dimensional SPH code (dotted curve) at 4#d5. An adiabatic
equation of state is used with=5/3.
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FIG. 13. EntropySin a shock-tube at early timgésas given by the quasi-analytic solution (solid line) and
our 1D SPH code (dotted curve), for the same calculation presented in Fig. 12.
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length common to particles initially in the right hand slab. These smoothing lengths are
allowed to vary with time and are chosen such that particles which are farthertilieon?

an interface havdly = 64 neighbors on average. Within each constant density slab, the S
particles start in a stable lattice with a randomly chosen orientation (choosing the lattice 1
to be parallel to the interface would be too artificial of a setup). The initial conditions f
each slab are constructed by randomly distributing particles in a periodic box of dimensi
% x 1 x 1 and then slowly relaxing the system with an artificial drag force. The resultir
lattices are preferred to initially randomly distributed particles, since a random distributi
would introduce a high noise level not representative of real applications.

We determine the accuracy of our calculations with the 3D code by comparing its res
against those of the much more accurate 1D code. Such 3D calculations are a useful anc
istic way to calibrate spurious transport in simulations with AV, since the test problem, whi
includes shocks and some large fluid motions, has many of the same properties as real :
physical problems. In fact, the recoil shocks in stellar collisions do tend to be nearly plar
so that even the 1D geometry of the shock fronts is realistic. The periodic boundary col
tions play the role of gravity in the sense that they prevent the gas from expanding to infir

Figure 14 shows the pressupe entropy variableA, densityp, and velocityvy as given
by our 1D code (solid curve) and by our 3D code (dots) at the relatively latettime
Here the 3D calculation implements the classical AV witk=0.5 and 8 =1. The bar
in the lower left corner of the uppermost frame displays the average region of influet
(i.e., the mean diameter of the smoothing kernels) for the particles in the 3D calculati
the total length of this bar is(), where(h) = 0.058 is the average smoothing length. The
3D calculation does well at reproducing the major features in the thermodynamic profil
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FIG. 14. The pressur®, entropy variableA, densityp, and velocity componeni, as given by our 1D code
(solid curve) and by one of our 3D calculations (dots) at the relatively latettim®, for the same shock-tube test
shown in Figs. 12 and 13. The bar in the lower left corner of the uppermost frame has a total lergthwhére
(h) =0.058 is the average smoothing length in the 3D calculation.



TESTS OF SPURIOUS TRANSPORT IN SPH 709

but, not surprisingly, smoothes out any small scale structure which occurs on lengths s
shorter than a few smoothing lengths. In the regions reaf.1 andx = 0.4, where the
fluid is being shock-heated, the pressure, entropy variable, and density in the 3D calcul
are double-valued due to short-range particle interpenetration and to the shock fron
remaining perfectly planar throughout the calculation.

Since the fluid in these calculations should move solely inxtdrection, spurious
motion in they- and z-directions is easy to measure. Spurious motion inxftirection
can be studied by the following method, based on the idea that planes of fluid shoulc
cross in one dimension. That s, the shape of a composition profile should remain uncha
throughout a calculation. Once the shock-tube system has reached a steady state, we e
the distribution of the Lagrangian labedgt = 0) as a function om(x), the amount of mass
between the interface (contact discontinuity) an®eviations from the initial profile must
be spurious, so we can immediately calculate spurious displacementscitliteztion for
individual particles. Diffusion measurements in each of the three directions give sim
results.

We have studied the quality of the 3D code’s results for various AV parameters .
forms. We have completed a number of shock-tube tests which began with the same i
conditions described above, but with different values of the AV parameters. Vanying
by a factor of 25 between.002 and 0050 makes little difference in the results, and w
therefore concentrate on the effectsoond 8. All calculations described in this section
haven? =0.01.

Figure 15 shows the dependence of the soluticmandg for the classical AV by plotting,
as a function of time, the mean square spurious displacement in the directions perpend
to the bulk fluid motion (in units ofi~/3, wheren is the SPH particle number density), the
internal energyd, and the entropys. The solid line results from our accurate calculatiol
of the shock-tube problem with the 1D code. In frame (a) of Fig.cdd5,0 while 8 is
varied. In (b),8 =0 and« is varied. Finally in ()8 = 1 andw is varied. Runs witle =0
or 8 =0 are interesting since they represent an AV which is either purely quadratic (
Neumann—Richtmyer viscosity) or linear (bulk viscosity)in, respectively, and these two
types of AV generate different numerical viscosities (see Section 6).

Table | summarizes all of our low Mach number 3D shock-tube calculations and rep
how well each does matching the 1D solution. All the calculations in Table | employed
particles and a fixed smoothing length chosen such that the number of neigjhaoeré4 on
average. In Column 1, we identify the type of AV used: C for the classical AV (Eq. (11)),
for the Hernquist and Katz AV (Eg. (13)), and B for the Balsara AV (Eg. (16)). Columns
and 3 list the AV parameters and 8 (unless otherwise notegf = 0.01). Column 4 gives
the type of timestep routine used: S for simple (Eq. (24)) and M for Monaghan (Eq. (2
Column 5 gives the Courant numb@f,. Columns 6 and 7 give the number of iteration:
required to reaclh=1 andt =4, respectively. Column 8 gives the fractional deviation il
the total energy away from its initial valualE/E = |[E(t =4) — E(t =0)|/E(t =0). The
t =4 value of6§+8§, the spurious displacement squared in the direction perpendict
to the bulk fluid flow, averaged over all particles, is listed in Column 9. Columns 10 ¢
11 give the maximum deviation i /E and S, respectively, from that of the 1D code:
A(U/E)max=Max|Uszp/Esp — U1p/Eip| and A Spax=Max|Sp — Sip|.

Figure 16 shows, as a function of time, the average square displacement perpend
to the bulk fluid flowaf, + 82, the ratio of internal to total enerdy/E, and the entropys
for three calculations with different forms of AV: the classical AV with= 0.5, 8 =1 (long
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FIG. 15. Dependence of the results of shock-tube calculations on the AV parametedg for the classical
AV with our 3D SPH code: (ay =0; 8 =1 (short), 2.5 (long), 10 (dot short), (IB)=0; « =1 (short), 2 (long),
3 (dot short), 10 (dot long), (@ = 1; « =0 (dot), 1 (short dash), 2 (long dash), 3 (dot dash). In all cese<0.01.
The solid line in the bottom two frames corresponds to our benchmark 1D calculation.

dashed curve), the HK AV withh = 8 = 0.5 (short dashed curve), and the Balsara AV with
a =B =1y/2 (dotted curve). As we will discuss in Subsection 7.4, these choicesdod

B are our recommended values. In the bottom two frames, the solid curve corresponc
our 1D SPH code. We see that all three AV forms can handle the shocks with roughly
same degree of accuracy, although the HK AV does allow slightly more spurious mixi
and does not match the 1D cod®gE curve quite as well.

We also ran several low Mach number calculations with the energy equation being
tegrated. Table Il compares these runs against the corresponding calculations in whicl
entropy equation was integrated. For given values,08, and,?, the two schemes do
equally well at conserving energy, at controlling particle diffusion, and at matching t
time evolution ofU /E from the 1D calculation. However, integrating the energy equatio
does allow slightly larger errors in the evolution of entropy, wWAl$,.x being 0.005 to
0.007 larger than when the entropy equation is integrated. This larger error in the entr
accumulates mostly at early times when the shocks are strongest.

5.2. High Mach Number Cases

Since many astrophysical situations involve shocks which are stronger than the
Mach number situation described in the previous section, we repeated shock-tube
with a larger difference in pressure between the alternating fluid slabs. In particular,
initially set pp=1.0, oy = 1.0, andp; =0.25 but reduced the pressure of the right-hanc
fluid slab top, = 1.2402x 103, a factor of 100 less than in the low Mach number cases
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TABLE |
Low Mach Number Shock-Tube Cases withy =5/3

Steps Steps AE/E 2+ 62
AV dt to to at =27
routine o B routine Cy t=1 t=4 t=4 att=4 AWU/E)nax ASnax
None S 0.1 436 1664 0.06% 115.7 0.111 0.14
C 0 0.1 S 0.1 413 1402 0.04% 25.25 0.044 0.051
C 0 1 S 0.8 38 140 4.56% 3.16 0.014 0.025
C 0 2.5 S 0.1 295 1121 0.04% 1.92 0.014 0.018
C 0 10 S 0.1 281 1078 0.04% 0.88 0.030 0.030
C 0 100 S 0.1 307 1072 0.05% 0.40 0.064 0.064
C 0.1 1 M 0.3 163 572 0.13% 2.51 0.012 0.019
C 0.2 0.5 M 0.3 145 523 0.25% 2.43 0.013 0.019
C 0.2 1 M 0.3 167 585 0.11% 1.81 0.010 0.020
C 0.2 1 M 0.8 63 218 1.31% 1.81 0.013 0.011
C 0.2 1.25 M 0.3 175 612 0.07% 1.72 0.011 0.020
C 0.3 1 M 0.3 170 604 0.09% 1.54 0.012 0.020
C 0.5 1 M 0.3 180 653 0.08% 1.10 0.017 0.019
C 0.5 1 M 0.8 68 245 0.78% 1.09 0.016 0.015
C 1 0 S 0.8 36 134 1.41% 0.78 0.021 0.018
C 1 1 S 0.8 39 164 1.25% 0.76 0.025 0.020
C 1 1 M 0.8 81 307 0.41% 0.74 0.025 0.023
C 1 1.25 M 03 221 832 0.03% 0.76 0.026 0.025
C 1 2 S 0.8 42 171 0.92% 0.72 0.028 0.025
C 2 0 S 0.1 278 1063 0.02% 0.51 0.035 0.034
C 2 1 S 0.8 56 231 0.72% 0.52 0.040 0.049
C 3 0 S 0.1 275 1053 0.01% 0.41 0.043 0.042
C 3 1 S 0.8 79 329 2.18% 0.40 0.047 0.066
C 10 0 S 0.1 265 1035 0.24% 0.11 0.071 0.068
HK 0 1.25 M 0.3 116 449 0.28% 7.40 0.016 0.015
HK 0.1 0.5 M 0.3 111 440 0.40% 8.97 0.018 0.016
HK 0.1 0.5 M 0.8 42 161 2.79% 6.95 0.014 0.025
HK 0.1 1 M 0.8 45 171 2.00% 4.64 0.018 0.014
HK 0.1 2 M 0.8 52 191 0.98% 3.19 0.025 0.025
HK 0.2 0.5 M 0.3 117 463 0.31% 4.63 0.013 0.012
HK 0.2 0.75 M 0.3 119 467 0.24% 3.95 0.016 0.016
HK 0.3 0.5 M 0.3 125 493 0.22% 3.05 0.016 0.017
HK 0.4 0.5 M 0.3 135 534 0.15% 2.45 0.020 0.022
HK 0.5 0.5 M 0.3 145 572 0.11% 1.97 0.025 0.027
HK 0.5 1 M 0.3 148 579 0.06% 1.78 0.029 0.032
HK 0.5 1 M 0.8 56 218 0.43% 1.80 0.030 0.031
HK 1 0 M 0.3 196 768 0.01% 1.21 0.039 0.040
HK 1 1 M 0.3 198 772 0.02% 1.13 0.044 0.045
HK 1 1 M 0.8 75 291 0.32% 1.16 0.044 0.046
HK 1 1 S 0.8 39 151 4.70% 1.36 0.043 0.080
B 0 2.5xy/2 M 0.3 192 687 0.05% 5.11 0.012 0.011
B 02xy/2 05xy/2 M 0.3 144 534 0.28% 6.86 0.021 0.018
B 0.5x y/2 1xy/2 M 0.3 173 637 0.12% 1.98 0.010 0.019
B 1xy/2 0.75xy/2 M 0.3 206 800 0.09% 1.14 0.018 0.019
B 1xy/2 1xy/2 M 03 211 811 0.07% 1.13 0.019 0.020
B 1xy/2 1xy/2 M 0.8 79 304 0.54% 1.08 0.020 0.018
B 1xy/2 1.25xy/2 M 0.3 216 819 0.05% 1.12 0.020 0.020
B 1xy/2 2xy/2 M 0.3 305 1195 0.05% 0.74 0.031 0.031
B 2xy/2 0 M 0.3 233 855 0.02% 1.07 0.022 0.023
B 2xy/2 1xy/2 M 0.3 309 1212 0.04% 0.70 0.032 0.031
B 2xy/2 1.25xy/2 M 0.3 311 1213 0.03% 0.71 0.032 0.032

712
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TABLE Il
Low Mach Number Shock-Tube Cases withy = 5/3 (Classical AV, Simple
Timestep Routine,Cy =0.1)

Steps Steps AE/E 82482

Evolution to to at 27
o B n? equation t=1 t=4 t=4 att =4 AU /E)max A Shax

0 1 0.01 entropy 313 1172 0.04% 3.9 0.015 0.016
0 1 0.01 energy 335 1295 0.04% 4.1 0.016 0.021
1 0 0.01 entropy 285 1082 0.01% 0.8 0.021 0.023
1 0 0.01 energy 309 1222 0.01% 0.8 0.022 0.03(
1 1 0.002 entropy 283 1076 0.01% 0.7 0.025 0.025
1 1 0.002 energy 306 1215 0.01% 0.8 0.024 0.032
1 1 0.01 entropy 283 1076 0.01% 0.8 0.025 0.025
1 1 0.01 energy 306 1210 0.01% 0.8 0.024 0.032
1 1 0.05 entropy 283 1079 0.01% 0.8 0.024 0.025
1 1 0.05 energy 307 1219 0.02% 0.8 0.024 0.031
2 1 0.01 entropy 278 1061 0.02% 0.5 0.036 0.035
2 1 0.01 energy 304 1197 0.00% 0.5 0.035 0.042
3 1 0.01 entropy 275 1053 0.01% 0.4 0.044 0.044
3 1 0.01 energy 304 1198 0.00% 0.4 0.044 0.05C
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FIG. 16. The average square displacement perpendicular to the bulk quicB&lev»ﬁf, the ratio of internal
to total energyJ/E, and the entrops for threey =5/3 shock-tube calculations with different forms of AV: the
classical AV witha = 0.5, 8 = 1 (long dashed curve), the HK AV wiila= 8 = 0.5 (short dashed curve), and the
Balsara AV witha = 8 =y /2 (dotted curve). The solid curve in the bottom two frames results from our 1D SF
code.
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FIG. 17. The same situation as Fig. 12, but for a higher Mach numb¢r{13.2) shock-tube test. The solid
line is the quasi-analytic solution, while the dotted line is the result of our 1D SPH code.

Subsection 5.1. This increases the Mach number of the initial shock waves+d.3.2.
The initial entropy of each of the periodic cells $=1.5[0.5In(1.5)] + 0.125In(1.5 x
0.0125] = —-0.4415.

For our 1D code, we continued to use the classical AV (see Eq. (11)) with paramet
a = =1 andn?=0.05. We used 2500 particles and constant (in time) smoothing lengt
h;i, chosen such that the particles have 16 neighbors initially. Figure 17 shows a compar
between our 1D SPH code (dotted curve) and the quasi-analytic solution (solid curve)
timet =0.15. As expected, the 1D code does smooth out discontinuities in the density o
a width of a few smoothing lengths. However, the agreement between the 1D code anc
quasi-analytic solution is still very good.

As in the low Mach number case, we can compare the results from the 3D code to
of the 1D code, in order to evaluate the amount of spurious mixing and to determine
acceptable range of values for the AV parameters for our 3D calculations. Table Il is
high Mach number equivalent of Table I. These 3D calculations emgleyl0* particles
each withNy = 64 neighbors, as in the 3D low Mach number calculations.

In Fig. 18 we present the results of 3D high Mach number shock-tube calculations
variousa and g with the classical AV. For all the 3D calculations in this figure, we chost
n?>=0.01 and used the Monaghan timestep routine \@ith= 0.8. The solid line is the
result of the 1D calculation. It is apparent that the spurious displacement is smaller
stronger AV, as expected and as in the low Mach number tests. As also seen in the low M
number tests, the case with the lowest spurious mixing 5, 8 = 0) has the worst fit to
the energy curve of the 1D calculation. Therefore, the best choice of AV parameters \
depend on the particular situation which is to be modeled. If spurious mixing is importan
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TABLE Il

High Mach Number Shock-Tube Cases withy =5/3

715

Steps Steps AE/E 874687
AV dt to to at =274
routine o B routine Cy t=1 t=4 t=4 att=4 AWU/BE)nx ASnax
None M 0.3 97 376 0.04% 300.1 0.207 0.85
C 0 1 M 0.1 411 1512 0.02% 6.02 0.028 0.11
C 0 1 M 0.8 83 247 1.49% 5.46 0.026 0.12
C 0 5 M 08 124 371 1.82% 1.39 0.065 0.14
C 0.1 1 M 0.3 227 687 0.07% 3.84 0.024 0.096
C 0.2 0.5 M 0.3 206 682 0.05% 4.57 0.027 0.14
C 0.2 1 M 03 231 715 0.06% 2.85 0.024 0.089
C 0.2 1.25 M 0.3 238 730 0.12% 2.27 0.027 0.084
C 0.3 1 M 0.3 233 746 0.06% 2.13 0.025 0.085
C 0.3 1.25 M 0.3 243 763 0.12% 1.76 0.028 0.081
C 0.5 1 M 0.3 245 827 0.05% 1.38 0.027 0.079
C 0.5 1.25 M 0.3 252 830 0.10% 1.26 0.031 0.075
C 0.5 25 M 0.3 283 896 0.16% 1.06 0.046 0.063
C 0.7 1.5 M 0.3 268 936 0.08% 0.94 0.037 0.068
C 1 0 M 0.8 97 386 0.71% 1.16 0.027 0.127
C 1 1 M 0.8 106 389 0.27% 0.85 0.033 0.076
C 1 1.5 M 0.3 292 1058 0.05% 0.82 0.042 0.062
C 1 2 M 0.3 299 1057 0.08% 0.79 0.048 0.063
C 1 2 M 0.8 112 397 0.02% 0.80 0.045 0.069
C 2 2 M 0.8 146 557 0.04% 0.56 0.059 0.089
C 5 0 M 0.8 258 1039 0.08% 0.27 0.077 0.12
HK 0 1.25 M 0.3 131 494  0.28% 9.71 0.053 0.072
HK 0.2 0.5 M 0.3 144 555 0.33% 13.41 0.043 0.086
HK 0.5 0.5 M 0.3 186 727  0.11% 4.04 0.041 0.080
HK 0.5 1 M 0.3 180 698 0.08% 2.78 0.060 0.066
HK 1 0 M 0.3 249 976 0.08% 2.90 0.029 0.11
HK 1 0.25 M 0.3 251 979 0.04% 2.26 0.046 0.082
HK 1 1 S 0.8 44 163 3.20% 1.62 0.069 0.093
HK 1 1 M 0.3 238 941 0.02% 1.57 0.073 0.083
HK 1 1 M 0.8 89 350 0.08% 1.55 0.068 0.077
B 0 2.5xy/2 M 0.3 279 834 0.31% 8.25 0.030 0.077
B 0.2xy/2 0.5x y/2 M 0.3 194 664 0.10% 16.99 0.055 0.19
B 0.5xy/2 0.75x y/2 M 0.3 243 854 0.02% 5.35 0.029 0.13
B 0.5xy/2 1xy/2 M 03 254 857 0.02% 4.35 0.025 0.11
B 1xy/2 0.75xy/2 M 0.3 293 1076 0.02% 1.88 0.024 0.089
B 1xy/2 1xy/2 M 0.3 300 1106 0.02% 1.57 0.026 0.074
B 1xy/2 1xy/2 M 08 112 413 0.33% 1.62 0.024 0.080
B 1xy/2 1.25xy/2 M 0.3 301 1077 0.03% 1.45 0.028 0.068
B 1xy/2 15xy/2 M 0.3 306 1080 0.05% 1.40 0.031 0.066
B 1xy/2 2xy/2 M 0.3 316 1100 0.09% 1.29 0.037 0.064
B 2xy/2 0 M 0.3 403 1617 0.03% 0.91 0.030 0.065
B 2xy/2 1xy/2 M 0.3 405 1577 0.00% 0.79 0.041 0.058
B 2xy/2 1.25xy/2 M 0.3 406 1562 0.01% 0.81 0.043 0.063
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FIG. 18. Dependence of the high Mach number shock-tube calculations on the AV paramatets for the
classical AV and our 3D SPH code. The different lines represent different values, as fallevds:;8 = 1 (dotted
curve);a =0, B =5 (short dashed curvey,=1, 8 =0 (long dashed curve}; =5, g =0 (dot-dash). The solid
curve is the result of the 1D calculation presented in Fig. 17.

control, then a strong viscosity is favorable. On the other hand, if spurious mixing is not
issue, one could use a weaker AV to more accurately determine the evolution of the syst
Figure 19 shows, as a function of time, the average square displacement perpendi
to the bulk fluid fIOWsz, + 82, the ratio of internal to total enerdy/E, and the entropys
for three calculations with different forms of AV: the classical AV with= 0.5, 8 = 1 (long
dashed curve), the HK AV with = 8 = 0.5 (short dashed curve), and the Balsara AV with
a =B =1y /2 (dotted curve). In the bottom two frames, the solid curve corresponds to c
1D SPH code. As will be discussed in Subsection 7.4, these choicesdiod 8 are our
recommended values. We see that the HK AV does allow slightly more spurious mixing ¢
does not quite match the 1D cod&s E curve as well. Nevertheless, all three AV forms
adequately treat the strong shocks of this system.

5.3. High Mach Number Cases with=3

Of course, not all fluids are well-described by the ideal gas 6/3) approximation. For
example, neutron star matter is best represented by a stiff equation of stateawh3,
while an isothermal gas can be described wits 1. Changing the value of changes the
thermodynamic properties of the material we model with SPH, which in turn affects t
way the AV behaves. Therefore, to investigate the dependengeabnthe “optimal” AV
parameters, we have performed some shock-tube calculationy witB. The fluid slabs
were set up to have the same Mach number as the previous high Mach number idea
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FIG.19. The same situation as Fig. 16, but for our high Mach number shock-tube test.

tests M =132): p=1, p=1, py =0.25 and p, =8.78 x 10~". The initial entropy of
each periodic cell iS=0.5[0.5In(0.5) + 0.125In(0.0562/2)] = —0.3965.

For the corresponding calculation with the 1D code, we used the classical AV schi
with @ = 8 = 1 andy? = 0.05, 2500 particles and 16 initial neighbors, as in the previous hi
Mach number case. For our 3D calculations, we uségbaticles with 64 initial neighbors,
and a variety of AV parameters with all three AV schemes. We used the Monaghan time
routine withCy = 0.3. A comparison between the 1D and 3D runs is given in Table IV, al
a selection of the results is shown in Fig. 20.

Asintheideal gas case, spurious diffusion is smaller for stronger artificial viscosities.
calculations with small show additional “wiggles” in the energy curve (see Fig. 20) an
larger errors in energy conservation (see Table V), suggesting the appearance of num
instabilities for strong shocks treated by weak AV forms. In general, we find that the le
of energy conservation is worse in gue= 3 calculations than in oyr =5/3 calculations
(compare Tables Il and V).

6. SHEAR FLOWS

6.1. Periodic Box Tests

In order to model a shear flow of infinite extent, we return to a cubical box with a si
lengthL =1 and periodic boundary conditions. The boundary conditions ox Had:%
andz= :I:% faces are identical to the periodic boundary conditions in the simple box test
Section 3: when a particle crosses one of these faces it is reinserted with the same ve
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TABLE IV
High Mach Number Shock-Tube Cases withy =3

Steps  Steps AE/E 82482

AV to to at [n=%3)
routine o B t=1 t=4 t=4 att =4 AU/E)max A Snax
C 0.2 0.5 238 849 1.10% 1.90 0.140 0.073
C 0.28 0.56 240 867 1.01% 1.27 0.114 0.065
C 0.3 1.0 248 877 0.63% 1.03 0.081 0.049
C 0.5 1.0 261 938 0.49% 0.79 0.045 0.039
C 0.5 1.25 264 939 0.37% 0.81 0.037 0.034
C 0.7 1.5 284 1013 0.26% 0.68 0.040 0.024
C 0.9 1.8 307 1106 0.20% 0.59 0.047 0.022
C 1.0 1.5 313 1147 0.24% 0.58 0.049 0.021
HK 0.2 0.5 184 708 1.30% 3.48 0.076 0.042
HK 0.28 0.28 223 880 0.54% 1.28 0.061 0.026
HK 0.5 0.5 216 844 0.62% 1.43 0.048 0.027
HK 0.5 1.0 214 836 0.48% 1.21 0.077 0.023
HK 0.7 0.5 243 955 0.40% 1.15 0.076 0.025
HK 0.9 0.9 269 1063 0.18% 0.83 0.115 0.037
B 0.5x y/2 1.0xy/2 271 1014 0.79% 1.35 0.094 0.060
B 0.56x y/2 0.56x y /2 286 1100 0.85% 141 0.103 0.068
B 1.0xy/2  0.75x y/2 329 1269  0.47% 0.83 0.039 0.042
B 1.0xy/2 1.0xy/2 326 1240 0.45% 0.82 0.031 0.038
B 1.0xy/2 1.25x y/2 324 1226 0.39% 0.81 0.033 0.035
B 1.8x y/2 1.8x y/2 421 1610  0.22% 0.60 0.066 0.018
B 20xy/2 1.0xy/2 446 1722 0.24% 0.56 0.066 0.018

at the corresponding position on the opposing face. Orythet% faces, however, we
implement“slipping” boundary conditions in order to maintain a velocity field with a she:
flow: if a particle crosses a face with a velocityy, vy, v,) at a position(x, i%, 2), it

is reinserted with a new velocit§vx I vo, vy, v;) at the position(x F vot + KL, F % 2),
wheret is the time elapsed since the beginning of the calculatiorkasthe integer which
places the particle in the central periodic cell. The resulting “stationary Couette flow” b
a velocity field close tqupy/L, 0, 0) (see Fig. 21).

Neighbor searching across the= i% and z= i% faces is done exactly as in
Subsection 3.1. Across the= i% faces, the slipping boundary conditions are taken int
account: the criterion for particl¢ having particlei as a neighbor is that there exists
integersk, |, andm such that the positiorx(+ kL +lvot, yi +1L, z +mL) is within a
distance B; of (xj, yj, zj). In addition, the relative velocity of particles interacting acros:
they = :i:% boundaries is adjusted hy when computing the AV ternlil;;. In this way,
particle interactions across the boundaries behave identically to interactions within the t

Our units of distance and mass are the length of the box and the total mass in the |
L =1 andM = Nm=1, whereN is the number of particles. We set the entropy variable
A =1 for all the particles initially. Consequently the unit of velocity in our calculations i
y ~Y?cs, wherecs is the initial sound speed, and the unit of time/i4?L /cs.

Figure 22 shows the spurious square displacement, energies, and entropy as a fun
of time in three calculations withl = 1000, Ny = 64, vo = 0.1y ~¥/?cs, and various forms
of AV. The system was relaxed for the first 10 time units (without AV) towards a situatic
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FIG. 20. The same situation as Fig. 16, but for the high Mach number shock-tube tesy with The
solid line is for the 1D calculation, and the others are the results of the 3D calculations with the following
schemes and parameters: dotiees; 0.5, 8 = 1.0, classical AV; short dashy, =0.9, g =1.8, classical AV; long
dasha =0.28, 8 =0.56, classical AV; dot-short dask,=1.0 x y/2, 8 =1.0 x /2, Balsara AV; dot-long dash,
a=18xy/2, =18 x y/2, Balsara AV, short dash-long dash=0.56 x y/2, 8=0.56 x y/2, Balsara AV.

with (vx, vy, v2) = (voy/L, 0, 0), while fromt =10 to 50 the system evolves freely with
the slipping boundary conditions and AV.

Notice the increase in energy once the relaxational damping is turned off: roughly a
increase inE per time unit. This increase results from the slipping boundary conditio
and, for a given AV form and AV parameters, is nearly independent of the resolution. Si
we are moving the boundary surfaces by hand and since there is viscosity, there is a
stress at the boundaries and work is being done on the system. This behavior is analog
that of a truly viscous fluid forced to undergo shear flow between close moving bounde
(as in a viscosimeter): the added energy goes into heating the fluid.

Since the faces of our cubical box have surface arfgdhe viscous forcd, acting on
the fluid inside of they =+L /2 faces is

a
Fy = :l:nﬂL2 = +nuol, (30)
ay
wheren is the dynamic viscosity (not to be confused with the AV paramgterThe rate

of energy change of the system is therefore

dE

T [Fxvxly=—r/2 + [Fxvxly=1L,2 (31)

= nuilL. (32)
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FIG.21. Particle velocities in the-direction plotted against theyrcoordinates. Slipping boundary conditions
aty = i% are used to maintain the shear flow. The system was relaxed without AV for the first 10 time units towa
a configuration withy, = vey/L, vy = v, =0 (the solid line), and then allowed to evolve with AV for another 10
time units to the state shown in this figure. Hege= 0.1cy =2, andL = 1 is the unit of length. We used = 1000
particles each withNy = 64 neighbors on average and the classical AV wita 0.5 andg =1.

Measuring the rate of energy increase therefore allows us to numerically determine
dynamic viscosity. This procedure for measuring viscosity is also implemented in molect
dynamics (e.g., [58]). To calculate the kinematic viscosifyom the dynamic viscosity,
one simply uses =n/p =nN/(Mn), wheren is the number density of particles.

In the absence of any spurious motion, SPH particles should maintain the same sp
coordinatey andz throughout the calculation. By monitoring motion in these two dimen
sions, we can therefore easily quantify the extent of spurious diffusion. As in Section
the square displacement increases linearly with time at late times. Here we measure
diffusion coefficientD by fitting the relation 385 +82)/2= Dt. In practice, we determine
n andD from the average slope of the energy and square displacement curves, respecti
between time$ =12 andt =50. Tables V and VI list the results of a set of runs at two
different shear velocities withNy = 64. We vary the AV scheme and the AV parameters
and monitor the time averaged velocity dispers{arj + vZ)/c3) betweert =12 and 50.
We also list the viscosity (as determined from Eg. (32)), the diffusion coefficiéntand
the product)D for each case (all converted into unid=cs=n=1 to keep our results
applicable to general situations). In the last three columns, the number in parer{these
the error in the last digit, or last two digits, that is quoted. The uncertainties for the viscos
n and the diffusion coefficier are determined from the root mean square deviati@h(of
and ofs2(t) 4 82(t) from the best-fit linear curve. In Table VII we present results from ¢
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FIG. 22. The spurious square displacement in the direction perpendicular to the fluid flow, energies,
entropy as a function of time in three calculations of a shear flow uNirg1000 andNy = 64 with different
forms of AV: the classical AV witle = 0.5, 8 = 1 (long dashed curve), the HK AV with= 8 = 0.5 (short dashed
curve), and the Balsara AV with= 8 =1 x y /2 (dotted curve). The system was relaxed for the first 10 time uni
towards a situation witltvy, vy, v,) = (0.1csy "?y/L, 0, 0), while fromt = 10 to 50 the system freely evolves
with slipping boundary conditions.

handful of calculations with various neighbor numbbsigs. All of the calculations use con-
stant smoothing lengths, as well as a constant timekte0.01 so that fixed computational
resources are available.

6.2. Rapidly Rotating, Self-gravitating Fluids

Rotation plays an important role in many hydrodynamic processes in astrophysics
instance, the collision of two stars typically results in a rapidly and differentially rotati
merger remnant. AV tends to damp away any such differential rotation due to the rele
velocity of neighboring particles at slightly different radii. In this section, we consider a c
ferentially rotating, self-gravitating spheroid and analytically estimate the viscous times
for each of the three AV forms examined in this paper. Our analytic estimates are then ¢
pared against numerical determinations of the viscous timescale. The larger the vis
timescale, the more closely the calculation is treating the gas as a perfect fluid.

As our concrete example, we consider an axisymmetric equilibrium configuration rota
with an angular velocity2 oc o ~*, where the cylindrical radiusr is the distance to the
rotation axis. In this case, the magnitude of the quarttity- v;) - (r; —r;) which appears
in Eq. (12) is~hAv for two neighboring particles separated B¥, a typical smoothing
length, where the shear velocityv = 1Q2h. Note thatAv = 0 for the special case of rigid
rotation ¢. = 0).
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TABLE V
N =1000,Ny =64, vo/cs = 0.1y~Y2, v =5/3, dt=0.01 Shear Tests
AV routine o B (Wi 4 v/ n[Mesn®?] D[cn 3] nD[Mc2n'3]
None 0.337 3.0(1x 10 2.85(6) 8.4(4x 104
C 0.0 1.00 0.020 1.332(® 102 4.59(5)x 102  6.13(7)x 10°°
c 0.0 2.50 0.016 2.763(5)10° 3.89(4)x 10 1.07(1)x 10°
c 0.0 10.00 0.012 8.71(310° 3.73(7)x 10° 3.25(7)x 105
C 0.3 0.50 0.013 5.60(4) 102 3.91(5)x 1073 2.19(3)x 10°°
C@?=0002) 03 1.00 0.013 6.16(6)10° 3.51(3)x 10 2.16(3)x 10°
c 0.3 1.00 0.013 6.05(5) 103 3.53(7)x 103 2.14(5)x 10
C@?=005 03 1.00 0.013 5.71(4 10 3.95(4)x 10° 2.26(3)x 105
c 0.5 1.00 0.012 9.09(18) 10 3.53(7)x 10 3.21(7)x 10°°
c 0.8 1.25 0.012 1.37(3) 102 3.78(6)x 10  5.2(1)x 10°
C 1.0 1.00 0.012 1.64(4) 102 3.68(4)x 10°  6.0(1)x 105
c 1.0 1.25 0.012 1.66( 102 3.44(9)x 10 5.7(2)x 10°°
c 2.0 0.00 0.010 311102 3.7(1)x 103 1.12(5)x 10
C 3.0 0.00 0.009 4.8(2102 3.57(3)x 102 1.71(8)x 10~
HK 0.0 1.25 0.082 1.72(55 10 0.17(4) 3.0(7)x 10°5
HK 0.0 10.00 0.038 5.08(4) 104 2.1(5)x 102 1.1(3)x 10°°
HK 0.1 0.50 0.066 4.15(2) 10 0.11(4) 4.5(17) 10°
HK 05 0.50 0.024 1.34(13 102  54(1)x 102  7.3(2)x 10°°
HK 0.5 1.00 0.025 1.39(3) 102 5.32(15)x 102 7.4(3)x 10°°
HK 1.0 1.00 0.022 2.64(3) 10 5.05(13)x 10 1.33(4)x 10°°
B 0.0xy/2 100xy/2 0.026 2.72(1x 10 1.16(3)x 102 3.13(7)x 10°°
B 00xy/2 250xy/2 0.023 453(1x 104 7.0(1)x 103 3.20(7)x 10°°
B 0.0x y/2 1000x y/2 0.020 1.055(3x 10°  5.8(1)x 10  6.1(1)x 107
B (712=0.002) Q5x y/2 050x y/2 0.013 2.33(2x 10°%  4.0(2)x10°  9.3(5)x 10°°
B 05xy/2 100xy/2 0.018 2.25(1x 103 3.42(35)x 102 7.7(8)x 10°°
B 10xy/2 000xy/2 0.015 4.22(3x 10 3.15(17)x 103 1.33(7)x 10°°
B 10xy/2 100xy/2 0.015 4.33(2x 10 3.93(5)x 10 1.70(3)x 10°°
B 10xy/2 200xy/2 0.014 4.444(7% 10 4.15(8)x 102  1.84(3)x 1075
B 20xy/2 000xy/2 0.013 8.5(1x 103 3.69(5)x 102 3.13(5)x 105
B 30xy/2 000xy/2 0.012 1.584(25x 102 3.82(6)x 10*  6.0(1)x 105

If the AV is of the form of Eq. (11) withg =0, Eq. (26) givess”"V and the viscous
dissipation timescale = v/v" = Qw /v ~ @ NY/?/(aAcs). Note that this timescale
is not directly dependent oN: increasingN while keepingNy fixed would not therefore
affect the viscous timescale in this case. For geneeald3, we analytically estimate from
Eq. (11) that

o AvCs J BAV?
— )2
1Y P

where j; and j, are dimensionless coefficients of order unity. In this case Eq. (26) mu
be replaced by® ~ kjacs Av/(hNy?) + kB Av2/(hNY/?), and the viscous timescale
T =v/9" is then given by

Ihj; ~ —j1 (Classical AV) (33)

v o AvCs BAV? )l—<k aACq BAAV

-1
tEi}AVav,v<kth'%‘/2+ thﬁ/Z leﬁ,/z-’_ksz,f{z) (Classical AV)

(34)
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TABLE VI
N =1000,Ny =64, vo/cs = 0.5y~Y2, v =5/3, dt=0.01 Shear Tests

AV routine o B (W54 v/ p[Mesn??] D[cn~v9] nD[Mc2n'?]
None 0.128 4.8(4x 105 0.38(7) 1.8(4) 10°5
C 0.2 0.75 0.029 9.3(6)10° 22(2)x102  2.1(2)x 10
C(@?=0.002) 03 1.00 0.026 151102 2.0(1)x 102  3.0(3)x 10
c 0.3 1.00 0.026 151102  2.0(1)x102  2.9(3)x 10
C@?=005) 03 1.00 0.026 1.3(8 102  21@2)x 102  2.9(3)x 10
C 0.3 0.50 0.028 11910102  21(1)x 102  2.4(3)x 107
c 0.4 0.50 0.026 16102 192)x102  3.1(4)x 10
c 0.5 0.50 0.024 22(102  2.0(1)x 102  4.3(5)x 10
C 0.5 1.00 0.023 252102 1.8(1)x 102  4.5(6)x 10
c 0.8 1.25 0.019 45(5)102 1.7(1)x 102 7.5(10)x 10~
c 1.0 0.25 0.019 5.4(8 102 159(7)x 102 8.5(12)x 10~
HK 0.0 1.25 0.079 2.66(51 10*  0.15(1) 4.0(3% 10°
HK 0.0 10.00 0.063 1.65(1 10  7.3(4)x 102 1.21(7)x 10~
HK 0.1 0.50 0.069 3.91(55 10 0.106(4) 4.1(2x 10°5
HK 0.2 0.50 0.062 6.69(73 10* 7.3(3)x 102  4.9(2)x 10°°
HK 0.2 0.75 0.061 7.11(8Y10*  6.8(3)x 102  4.9(2)x 10°°
HK 0.3 0.50 0.059 9.7(x 104 5.8(3)x 102  5.6(4)x 10°°
HK 0.4 0.50 0.056 1.28(3} 10° 5.4(5)x 102  6.9(7)x 10°°
HK 0.5 0.50 0.055 1.66(6) 10° 55(4)x 102  9.2(8)x 105
HK 0.8 1.25 0.052 2.8(1x 103  4.6(7)x102  1.3(2)x 10
HK 1.0 0.25 0.051 37(2x10°  4.4(8)x 102  1.6(2)x 10
B 0.0xy/2 100xy/2 0.054 5.90(4x 10*  53(3)x 102  3.1(2)x 10°°
B 00xy/2 250xy/2 0.045 1.245(9% 10°  3.1(3)x 102  3.8(4)x 10°°
B 0.0x y/2 1000x y/2 0.036 4102k 10° 2.87(6)x 102  1.18(3)x 10~
B (72=0.002) Q5x y/2 050x y/2 0.036 3.8(2x10°%  2.3(3)x102 8.7(10)x 10°°
B (n2=0.05) 05xy/2 050x y/2 0.037 3.6(2x 103  2.2(3)x 102 7.8(13)x 10°°
B 05xy/2 100xy/2 0.036 41(2x 10  2.4(2)x 102 9.6(11)x 10°°
B 08xy/2 125xy/2 0.032 714K 10°%  23(Q2)x102  1.6(2)x 10
B 1.0xy/2 000x y/2 0.031 8.9(6) 103  2.2(2)x102  2.0(2)x 104
B 10xy/2 075xy/2 0.030 9.2(6Kx 10°  2.1(2)x 102  1.9(2)x 10
B 10xy/2 100xy/2 0.030 9.6(7x 103  2.0(3)x102  2.0(3)x 10
B 10xy/2 125xy/2 0.030 9.5(6) 103  2.2(2)x102  2.1(3)x 10
B 10xy/2 200x y/2 0.030 9.9(6K 10°  2.2(2)x 102  2.2(2)x 10
B 20xy/2 000xy/2 0.024 252K 102  2.02)x102  4.9(7)x 10

TABLE VII
N =1000,vo/cs= 0.1v~¥2, v = 5/3, dt= 0.01 Shear Tests

AV routine a B Nn (W7 +v2)/c5)  n[Men?] D[cn~Y3] nD[Mc2nY/3]
B 00xy/2 100xy/2 20 0.060 6.63(7x 10* 7.0(3)x 10°  4.7(2)x 10°°
B 0.0xy/2 100xy/2 32 0.037 2.98(2x 10  6.7(2)x 10°  2.00(7)x 10°°
B 00xy/2 100xy/2 64 0.026 2.72(1x 10* 1.16(3)x 102  3.13(7)x 10°°
B 1.0xy/2 000xy/2 20 0.027 4.85(3% 10° 55(2)x 10 2.67(10)x 10°5
B 10xy/2 000xy/2 48 0.017 4.48(2x 10 3.85(8)x 10%  1.72(4)x 105
B 10x y/2 000xy/2 64 0.015 4223103  3.2(2)x 102  1.33(7)x 10
B 10xy/2 100xy/2 20 0.026 4.92(4% 10° 5.16(8)x 10°  2.54(5)x 10°5
B 10x y/2 100xy/2 64 0.015 4.33(2x 103 3.93(5)x 10°  1.70(3)x 10°5
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wherek; andk, are dimensionless coefficients of order unity. The ratio of the two term
on the right hand side of Eqg. (34) tells us that the von Neumann—Richtmyer viscos
(corresponding to the term wif) yields a timescale longer than that of the bulk viscosity
by a factor of ~acs/(BAv). The bulk viscosity therefore dominates the shear for th
classical AV, provided only thahv < Cs.

If the AV is instead given by HK form (Eg. (13)), dimensional analysis gives

0~ j,O{AUCS j,,Bsz
i UONTZ T 2N

(HK AV) (35)

if (V-v); or (V-v); is negative (otherwisé€l;; =0). Although our idealized velocity
field satisfies(V - v); =0, the numerical estimation of the velocity divergence, as comn
puted by Eq. (15), gives small but non-zero results. In deriving Eq. (35) we have us
|(vi —Vj) - ViW;|/n~ Av/(hNy), which implies|V - v|; ~ Av/(hNy?) from Eq. (15).
Before we can estimateiAV = |—ij,-l'li,-ViVVij| we must note that the summation
—Zj m; ITi; ViW,; appearing in Eq. (10) scales like the number of teNggn the summa-
tion (not N,f,/z as with the classical AV): the conditiqiV - v); < 0in Eq. (14) requires that
the vectorsv; W; for whichTI;; # 0 are found preferentially in the direction of particle
velocity deviation from the local fluid flow. ThereforgY ~ k;acs Av/(hNy?) + K, Av2/
(hNy), and the timescale satisfies

&

A A\ AA
v U(k,lacs v B v) :(k,l oACs k/ﬂ v

-1
L HK AV),
i hN&2 TNy N,§/2+ szN) ( )

DAY .

(36)

wherej;, j;, ki, andk; are coefficients of order unity.

Comparing Egs. (34) and (36) we see that the timescale due to the bulk viscosity i
the same order of magnitude for the classical and HK artificial viscosities; however, 1
timescale associated with the von Neumann—Richtmyer term is longer in the HK AV by
factor N,f,/z. Since typical 3D calculations hawy ~50-100, the increase in the viscous
dissipation timescale is substantial whenever von Neumann—Richtmyer viscosity terms
significant.

If the AV is given by Balsara’s form (Eqg. (16)), we need to estimate the siz§ of
(Eq. (18)) before we can estimdik; . For our assumed velocity fiel® x v|= (2 - 1)<2.
Therefore, provided thatis far enough from 2 that the curl of the velocity dominates ove
the other terms in the denominator on the right hand side of Eq. (18), an SPH evaludtion
gives

IV A
IV xvl o NYR2 -

= f. 37)

Recalling thai(pi / p? + pj/p?) = 2¢2/(yp), we estimate from Eq. (16) that

A 2 Av? (2
ITjj %—jfa o (;f) — jé’ﬁ 0 <;f2> (Balsara AV) (38)

0



TESTS OF SPURIOUS TRANSPORT IN SPH 725

wherej; andj; are coefficients of order unity. Therefoié\ ~ 2k{acs Avf/(yh Nﬁ,/z) +
2kyBAv2 £2/(yhNY?), and the viscous timescale is given by

v L, AVCs (2 SBAVE 2, -1
T Y {k hNY? <f) the th/Z(Vf

A2 2 A3 A 2171
~ [ L 2’2/2”] (Balsara AV)  (39)
@NN(@2—=2)y o Ny (2—-1)2Y

wherek; andk; are also coefficients of order unity.

To test these simple analytic estimates we computely; /|—EJ- m; IT;; ViW; | for a
rapidly and differentially rotating spheroid. This spheroid was constructed in three st
(1) we created a spheriaal= 3, I'; = 5/3 configuration (pressure profife= Ap®/3 o p*/3,
and consequenthj o p~%/3) of radiusR and masdV; (2) assigned a velocityy = 0.5 (in
units whereG = M = R=1) in the azimuthal directiod? to all particles; and (3) relaxed
to a rotating equilibrium state by means of an artificial “drag” fooceog?)—vi on the
particles. The resulting rapidly rotating spheroid/(W|~ 0.11) is in virial equilibrium
with a rotation profile close t® o« o ~*. At smallz, when the particle smoothing kernels
overlap with the rotation axis, the finite resolution of the SPH scheme cause deviations
the @ oc o ~2, cutting off the divergence ak atw = 0. The centrifugal force neas = 0
nevertheless is strong enough to make the density a local minimum there; in the equa
plane the maximum density actually occursmat: 0.14.

For such a configuration modeled usihg=10* and Ny ~ 64, Fig. 23 compares the
actual timescale; = vi/|—zj m; I[T;; ViW;; | computed directly from the SPH code (left
frame) against our analytic estimates (right frame): (a) classical AV withl, 8 =0;
(b) classical AV witha =0, g =1.5; (c) HK AV with « =0.5, 8 =0; (d) HK AV with
a =0, B=0.5; (e) Balsara AV withu =y /2, 8 =0; and (f) Balsara AV withwu =0, 8 =
1.5 x y /2. For all six cases, the same set of particles are analyzed, with the only differe
being the wayi”V is calculated. It is clear that our analytic estimates do a good job
reproducing the overall trend in position and magnitude of the actual timescdlee
estimates for cases (a) and (c) are identical, while the average measured timescale il
(a) is slightly less than that of case (c), which implkés< k;. For each of the AV forms, the
timescale due to the bulk viscosity is significantly less than that due to the von Neumz
Richtmyer viscosity.

Our analytic estimates dil;; and the viscous dissipation timescaléhave neglected
the effects of additional velocity contributions due to particle noise. For this reason,
numerical coefficients in Egs. (34), (36), and (39) are not strictly constant but instead |
some complicated dependence on the neighbor nuidheand noise level in the system.
Consequently when the particle noise is comparable to the shear velocity, our expres
tend to overestimate the timescale. Figure 24 shows the timescales in 6 different cal
tions which have evolved freely for 1 time unit from the relaxed particle state of Fig. :
During this evolution, the particle noise level grows large enough to make our anal
formulae overestimate the timescale for cases (d), (e), and (f) by a fact@.&furthermore,
while both the HK and Balsara AVs continue to have significantly longer timescales thar
classical AV, the timescale for the Balsara AV is now only slightly larger than for the HK A

Figure 25 shows the evolution of the angular momentum préfile seven different
calculations which began with the same initial conditions but implemented the differ
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FIG. 23. The viscous timescale as a function of the distasc&om the rotation axis for various artificial
viscosities in a system which has been relaxed into a rapidly, differentially rotating configuratiars=@pand
B=0inEq. (11); (b)x=0ands =2in Eq. (11); (cx =2 and =0in Eq. (13); (dx =0ands =2in Eq. (13);
(e)e=2x y/2 andp =0 in Eqg. (16); and (flu =0 andf =2 x y/2 in Eq. (16). Both the actual timescale
5 =v/|-X;m;IT; ViW; | computed directly from the SPH code (left frame) and the analytic estimate (rigt
frame) are shown. Estimates are computed from Eq. (34) kyithk, =1 used as an approximation for (a) and
(b), from Eq. (36) withk; =k, =1 for (c) and (d), and from Eq. (39) witk{ =k, =1 for (e) and (f).

artificial viscosities: Egs. (11), (13), and (16). The Balsara AV best preserves the ang
velocity profile.

One might worry that the spurious increase in the internal eneagyentropy variableA
due to shear might also occur on as short a timescale as the viscous dissipation. How
dimensional analysis on Eqgs. (20) and (21) shows that the spurious increasanith
A occurs on a timescaterc2/(y (y — 1)v Av). In typical system® Av < c2, so that the
timescale fou or Ato change is considerably longer than the viscous dissipation timescale
Figure 26 shows the entrofyas a function of time for various types of AV. Although
AVs with more shear viscosity naturally produce more spurious increase in entropy, in
cases the rate of entropy increase is rather small.

7. DISCUSSION AND SUMMARY

7.1. Particle Diffusion

Many of our tests focus on spurious diffusion, the motion of SPHparticles introduced
an artifact of the numerical scheme. We have analyzed spurious diffusion by using S
particles in a box with periodic boundary conditions to model a stationary fluid of infini
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FIG.24. Thetimescale; = v /| —X;m;IT;; V; W; | computed directly from the SPH code for various artificial
viscosities after 1 time unit of free evolution. The various AV schemes and parameteds are the same as in
Fig. 23.

extent. For various noise levels (particle velocity dispersions) and neighbor nuiipers
we measure the rate of diffusion, which we quantify by calculating a diffusion coeffibient
Although strong shocks and AV in SPH calculations can lead to additional particle mix
[28], particle diffusion is the dominant contribution to spurious mixing in weakly shock
fluids.

Once expressed in terms of the number density of SPH particles and the sound speed
diffusion coefficients can therefore be used to estimate spurious deviations in particle |
tions in a wide variety of applications, including self-gravitating systems. For each part
in some large-scale simulation, this spurious deviation is estimated simply from Eq. (
The coefficientD in the integrand of Eq. (28) depends on the particle’s velocity deviatit
from the local flow, the local number densityof particles, and the local sound spagdso
that these quantities need to be monitored for each particle during the calculation. St
scheme is used in Section 4 to estimate spurious mixing in an equilibrium polytrope anc
also been successfully applied in the context of stellar collision simulations [19]. Indeed
diffusion coefficients provide an extremely valuable means of estimating spurious mi
in real simulationsvith artificial viscosity For the headon collisions presented in Ref. [19
such estimates were compared with those of a second method which automatically inc
the effects of artificial viscosity. For the seven simulations for which a comparison v
possible, the two methods gave root mean square displacements that agreed to wi
factor of 1.4. The great advantage of using diffusion coefficients is that they can be apj
in all cases.
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FIG. 25. The angular velocity2 as a function of cylindrical radiug at times (a)t=0, (b)t=1, and
(c)t =10 in seven different calculations which began with the same initial conditions but implemented differ
artificial viscosities, namely, from top to bottom in (c): no AV (solid curve}= 0 andg =2 x y/2 in Eq. (16)
(short dash—long dash),= 0 andg =2 in Eq. (13) (dot—short dashy,=2 x y /2 andB =0 in Eq. (16) (dot-long
dash),x =0 andg =2 in Eq. (11) (short dashy =2 andg =0 in Eq. (13) (long dash), and=2 and8 =0 in
Eq. (11) (dotted).

For sufficiently low noise levels, the diffusion coefficient essentially vanishes, as t
particles simply oscillate around equilibrium lattice sites. We say that such a system
“crystallized.” For a neighbor numbéty ~ 64, a system of SPH particles will crystallize
if the root mean square velocity dispersion is less than about 3—4% of the sound speed
find that, for the range ofiy that we explored (32 Ny < 64), crystallized cubic lattices
are unstable against perturbations, while lattice types with large packing fractions, suc
hexagonal close-packed, are stable. For this reason it may sometimes be better to con
initial data by placing particles in a close-packed lattice, rather than in a cubic lattice
is often done. In practice, initial particle data are typically constructed by first relaxir
the system with an artificial drag force, a procedure which automatically produces a stz
lattice structure but also spuriously removes small amounts of internal energy.

The diffusion coefficients have been measured using equal mass particles. Someti
however, SPH calculations use particles of unequal mass so that less dense regions ca
be highly resolved. To test the effects of unequal mass particles in a self-gravitating syst
we constructed an equilibrium= 1.5 polytrope, using particle masses which increase
with radius in the initial configuration. Allowing the system to evolve, we observed th
the heaviest particles gradually migrated towards the center of the star, exchanging pl
with less massive particles. For a polytrope modeled Witk 1.4 x 10* particles and a
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FIG. 26. Entropy S as a function of time for the seven calculations presented in Fig. 25. The various |
types are as in Fig. 25.

neighbor numbeNy ~ 64, the distribution of particle masses is reversed within roughly
dynamical timescales. Thisis caused by the interactions among neighboring particles vi
smoothing kernel. These interactions allow energy exchange, and equipartition of en
then requires the heavier particles to sink into the gravitational potential well. Spuri
mixing is therefore a more complicated process in calculations which use unequal
particles: each particle has a preferred direction to migrate, and in a dynamical applic:
this direction can be continually changing. For simulations in which fluid mixing isimporte
and density contrasts are not extreme, equal mass particles are an appropriate choice

7.2. Shock Tube Tests

The diffusion tests just described are all done in the absence of shocks and without A
test the AV schemes described in Section 2, we turn to a periodic version of the 1D Rien
shock-tube problem of Sod [56]. Initially, fluid slabs with constant (and alternating) den:
p and pressur@ are separated by an infinite number of planar, parallel, and equally spa
interfaces. We treat this inherently 1D problem with both a 1D and a 3D SPH code. The
code is naturally more accurate and provides a benchmark against which we can cor
the results of our 3D code. In both cases, periodic boundary conditions allow us to m
the infinite number of slabs.

Using various values af andg, we performed a number of such shock-tube calculatiol
with our 3D code, at both Mach numbekd ~ 1.6 and M ~ 13.2 for y =5/3. In addition,
we performed tests with = 3 andM ~ 13.2. For each 3D calculation, we compare the tim
variation of the internal energy and entropy of the system against that of the 1D calcula



730 LOMBARDI, JR. ET AL.

Furthermore, since any motion perpendicular to the bulk fluid flow is spurious, we were a
able to examine spurious mixing. We find that all three forms of AV can handle shocks w
For example, withN = 10* and Ny ~ 64, there is better than 2% agreement with the 1L
code’s internal energy vs time curve whén ~ 1.6, and agreement at about the 3% level
whenM =~ 13.2. We also find that both Egs. (11) and (16), as compared to Eq. (13), allc
less spurious mixing and do somewhat better at reproducing the 1D code’s results. Fc
three forms of AV, increasing the strength of the AV allows for less spurious diffusion.

From Tables I-1V, which present results for numerous shock-tube tests, we see tha
level at which energy conservation is satisfied depends only weakly on the AV parame
but strongly on the length of the timesteps. Energy is typically conserved to better tt
0.1% in they =5/3 3D calculations whenever the number of timesteps to réach
exceeded 1000. Monaghan's timestep routine is more efficient, in part because it t
shorter timesteps when shocks are strong (that is, when there are large velocity differe
between neighboring particles). The agreement between the 3D and 1D calculations fo
internal energyJ and entropyS was strongly dependent on the AV parametesnd 8
(see Subsection 7.4), but only weakly dependent on the Courant n@gber timestep
routine.

Such calculations are a useful and realistic way to calibrate spurious transport, since
test problem, which includes shocks and significant fluid motion, has many of the sa
properties as real astrophysical problems. In fact, the recoil shocks in stellar collisions
tend to be nearly planar, so that even the 1D geometry of the shock fronts is realistic.
periodic boundary conditions play the role of gravity in the sense that they prevent the
from expanding to infinity.

7.3. Shear Flows

To test the various AV forms in the presence of a shear flow, we impose so-called s
ping boundary conditions on a periodic box, as is commonly done in molecular dyna
ics (see, e.g., [58]). The resulting “stationary Couette flow” has a velocity field close
(vx, vy, v7) = (voY/L, 0, 0) and allows us to measure the numerical viscosity of the part
cles. Asin the shock-tube tests, we also examine spurious mixing in the direction perpen
ular to the fluid flow. These shear tests therefore allow us to further investigate the accu
of our SPH code as a function of the AV parameters and scheme. We find that both
Hernquist and Katz AV (Eqg. (13)) and the Balsara AV (Eq. (16)) exhibit less viscosity thz
the classical AV (Eq. (11)). While the HK AV produces the smallest numerical viscosity f
these pure shear flows, it also has the largest spurious diffusion coefficient (see Table
The product) D is smallest for the HK AV, indicating that this form is well suited for keep-
ing spurious mixing at a manageable level during calculations involving shear flows. |
all three forms of the AV, increasingandg tends to damp out the noise and consequentl
decrease spurious mixing, but it also increases the spurious shear viscosity.

Rotation plays an important role in many hydrodynamic processes. For instance, a
lision between stars can yield a rapidly and differentially rotating merger remnant. E\
in the absence of shocks, AV tends to damp away differential rotation due to the rela
velocity of neighboring particles at slightly different radii, and an initially differentially
rotating system will tend towards rigid rotation on the viscous dissipation timescale.
systems best modeled with a perfect fluid, ideally with a viscous timeseals, any such
angular momentum transport introduced by the SPH scheme is spurious.
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As a concrete example, we consider an axisymmetric equilibrium configuration differ
tially rotating with an angular velocity profil (=) o« @ ~*, wherew is the distance from
the rotation axis and is a constant of order unity. We then analytically estimate the vi
cous dissipation timescale for each of the three AVs discussed in Section 2. These an
estimates are found to closely match numerically measured values of the timescale.
the Hernquist and Katz AV (Eq. (13)) and the Balsara AV (Eq. (16)) yield longer viscc
timescales than the classical AV (Eg. (11)), and hence are better at maintaining the an
velocity profile. The Balsara AV does best in this regard.

7.4. Artificial Viscosity Forms and Parameters

When choosing values of AV parameters, one must weigh the relative importanc
shocks, shear, and fluid mixing. For this reason, it is an application-dependent, some
subjective matter to specify “optimal values”@fndg. Here, however, we roughly delin-
eate the boundaries of the region in parameter space that gives acceptable results.

Our shock-tube tests of Section 5 are all done with periodic cells each containing r
M = 0.625. We find that the quantiyA (U /E)mad? + ((¥ — 1) A Snax/ M)? is a convenient
measure of how well a calculation matches the 1D code’s results for both internal energ
entropy (note thaty — 1) ASnax/M ~ A Amax/ A for small A Syax). Values ofA(U/E)max
andA Syax are listed in Tables I-IV.

Examination of the final three columns in Table | leads us to the following accepta
ranges for in oury =5/3 low Mach number shock-tube test2€ « < 1 for the classical
AV, 0.1 <« £0.5 for the HK AV, and 02 < 2a/y < 1 for the Balsara AV. If spurious diffu-
sionis notaconcern, these rangesfoan all be extended down to a lower limit& 0. For
a given value ofx, the acceptable range gfis approximately given by.8 <2« + 8 <3.3
for the classical AV, and .6 < 2o + g < 1.3 for the HK AV, and 08 < (2 + 8)2/y <3.3
for the Balsara AV. For parameters in these ranges, all three AVs handle the low Mach r
ber shocks with roughly the same level of accuracy. When Monaghan'’s timestep routi
used withCy = 0.3, values ofx and 8 which worked particularly well in our low Mach
calculations included = 0.2, 8 =1 for the classical AV = 0.3, 8 = 0.5 for the HK AV,
ande =0.5x y /2, 8 =y /2 for the Balsara AV.

For our high Mach number tests, inspection of Tables Il and IV leads to the f
lowing acceptable ranges for the AV parameter8:Ja + 8 < 3.5 for the classical AV,
1<a+ B <1.6forthe HK AV, and 19 < (o + B)2/y < 4 for the Balsara AV. The Balsara
AV seems capable of handling these high Mach number shocks marginally better thal
classical AV, and both are more accurate than the HK AV. Valuesasfd 8 which worked
particularly well in both of oury =5/3 andy = 3 high Mach calculations included=1,

B =15 for the classical AV, and =2 x y /2, 8 =y /2 for the Balsara AV. With the HK
AV, a = 0.5, B = 1 worked quite well fory = 5/3, as dide =0.5, 8=0.5 for y = 3. By
performing these high Mach calculations for two different valueg,afie have determined
that the ranges of acceptable AV parameters are only weakly dependent on the equat
state for both the classical AV and the HK AV. For the Balsara AV, we find ¢hahd 8
should scale roughly as, so that softer equations of state require larger AV parameters

Our shear tests of Section 6 allow us to further examine the accuracy of our SPH
as a function of the AV parameters. Not surprisingly, increasing the strength of the
tends to increase the measured viscogignd decrease the measured spurious diffusic
coefficientD. The product of the viscosity and the diffusion coefficient provides a convenis
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(but somewhat arbitrary) measure of a calculation’s accuracy. We find that increasin
typically tends to increase the produdD in our shear tests, and we consequently choos
as the “optimal” value o# a relatively small value for which the shock-tube tests (both lov
and high Mach number) give acceptable results.

The combined results of our shock-tube and shear tests therefore suggest a sing|
of AV parameters which are appropriate in a large number of situatiors0.5, 8~ 1
for the classical AVx ~ g ~ 0.5 for the Hernquist and Katz AV, and~ g ~ y /2 for the
Balsara AV. We will refer to these parameters as “optimal”; however, these choices shc
be modified depending on the particular application. For instance, if spurious mixing
not a concern and if only weak shock$1(< 2) are expected during a calculation, then a
smaller value ol is appropriate. Likewise, if strong shocks are expectetix a few) and
shear viscosity is not a concern, then a stronger AV is justified.

Our recommended values farand 8 correspond to a somewhat weaker AV than is
typically suggested in the literature (e.g.s= 1, 8 ~ 2 for the classical AV). While larger
AV parameters are appropriate in extreme cagelsX 10), we feel our suggested values
are slightly more accurate for most situations. Furthermore, since errors do not cha
significantly when the energy rather than the entropy equation is integrated (the only m
difference being a largeA Sy« for the energy equation, by a roughly constant amoun
see Table Il), we conclude that these “optimal” parameters are insensitive to the mean
which the thermodynamics is treated. However, we have not tested the dependence c
optimal AV parameters on the neighbor numib&y in detail, nor have we performed test
calculations in which both shear flows and shockssaraultaneouslypccurring.

Morris and Monaghan [30] have recently tested the classical AV of Eq. (12) wiitiea
varyingviscosity parametet, and with = 2«. The evolution ofx is determined for each
particle by a source and decay equation, causing the AV to be significantly active only
the immediate vicinity of a shock. The results of their tests are encouraging, and their i
of time-varying AV coefficients could be applied to any AV form.

Our results concerning the various AV forms can be summarized as follows. We find t
the AVs defined by Egs. (11) and (16) do equally well both in their handling of shocks a
in their controlling of spurious mixing, and do slightly better than Eq. (13). Furthermor
both Egs. (13) and (16) do introduce less numerical viscosity than Eq. (11). Since us
Eqg. (16), Balsara’s form of AV, does indeed significantly decrease the amount of sh
viscosity without sacrificing accuracy in the treatment of shocks, we conclude that it is
appropriate choice for a broad range of problems. This is consistent with the succes
use of Balsara’s AV reported by Navarro and Steinmetz [59] in their models of rotati
galaxies.

Balsara’s viscosity was constructed to be quite similar to the classical AV in form; tl
main difference is that Balsara’s form contains a “switch” which suppresses the AV
regions of large vorticity. It is a simple matter to generate more sensitive switches than
one in Eq. (16). For instance, instead(df+ f;)/2 one could usd; f; (or more generally
(fi fj ), with k > 1). Alternatively, in place of the form functiof) defined by Eq. (18), one
could use

(V-v)! _
(V-v)2+ (V x V)2 + e/ h?

g = (40)

As expected from scaling analyses such as in Subsection 6.2, the viscous dissips
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timescale can be increased by adopting more sensitive switches such as these. Ho
such switches also tend to allow a faster rate of spurious particle diffusion. We have
formed a handful of tests which suggest that such generalizations of Balsara’s AV may
handle shocks well, although more tests are necessary.
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