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Abstract

Smoothed particle hydrodynamics is a multidimensional Lagrangian method of numerical hydrodynamics that has been
used to tackle a wide variety of problems in astrophysics. Here we develop the basic equations of the SPH scheme, and
we discuss some of its numerical properties and limitations. As an illustration of typical astrophysical applications, we
discuss recent calculations of stellar interactions, including collisions between main sequence stars and the coalescence of
compact binaries. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) is a Lagrangian method that was introduced speci�cally
to simulate self-gravitating 
uids moving freely in three dimensions. The key idea of SPH is to
calculate pressure gradient forces by kernel estimation, directly from the particle positions, rather than
by �nite di�erencing on a grid, as in older particle methods such as PIC. SPH was �rst introduced
by Lucy [36] and Gingold and Monaghan [19], who used it to study dynamical �ssion instabilities
in rapidly rotating stars. Since then, a wide variety of astrophysical 
uid dynamics problems have
been tackled using SPH (see [40] for an overview). In addition to the stellar interaction problems
described in Section 2, these have included planet and star formation [45,7] supernova explosions
[22,18] large-scale cosmological structure formation [26,59] and galaxy formation [25,64].
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1.1. SPH from a variational principle

A straightforward derivation of the basic SPH equations can be obtained from a Lagrangian
formulation of hydrodynamics [20]. Consider for simplicity the adiabatic evolution of an ideal 
uid
with equation of state

p= A�
; (1)

where p is the pressure, � is the density, 
 is the adiabatic exponent, and A (assumed here to be
constant in space and time) is related to the speci�c entropy (s ˙ ln A). The Euler equations of
motion

dC
dt
=
@C
@t
+ (C ·3)C=−1

�
3p (2)

can be derived from a variational principle with the Lagrangian

L=
∫ { 1

2v
2 − u[�(r)]} � d3x: (3)

Here u[�] = p=[(
− 1)�] = A�
−1=(
− 1) is the speci�c internal energy of the 
uid.
The basic idea in SPH is to use the discrete representation

LSPH =
N∑
i=1

mi[ 12v
2
i − u(�i)] (4)

for the Lagrangian, where the sum is over a large but discrete number of small 
uid elements, or
“particles”, covering the volume of the 
uid. Here mi is the mass and Ci is the velocity of the particle
with position ri. For expression (4) to become the Lagrangian of a system with a �nite number N
of degrees of freedom, we need a prescription to compute the density �i at the position of any given
particle i, as a function of the masses and positions of neighboring particles.
In SPH, the density at any position is typically calculated as the local average

�(r) =
∑
j

mjW (r − rj; h); (5)

where W (x; h) is an interpolation, or smoothing, kernel of width ∼ h. Necessary constraints on the
kernel W (x; h) are that (i) it integrates to unity (consequently the integral of Eq. (5) over all space
automatically gives the total mass of the system), and (ii) it approaches the Dirac delta function
�(x) in the limit h→ 0.
Eq. (5) gives, in particular, the density in the vicinity of particle i as �i = �(ri), and we can now

obtain the equations of motion for all the particles. Deriving the Euler–Lagrange equations from
LSPH we get

dCi
dt
=−

∑
j

mj

(
pi
�2i
+
pj
�2j

)
3iWij; (6)

where Wij = W (ri − rj; h) and we have assumed that the form of W is such that Wij = Wji. The
expression on the right-hand side of Eq. (6) is a sum over neighboring particles (within a distance
∼ h of ri) representing a discrete approximation to the pressure gradient force [− (1=�)3p]i acting
on particle i.
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The following energy and momentum conservation laws are satis�ed exactly by the simple SPH
equations of motion given above

d
dt

(
N∑
i=1

miCi
)
= 0 (7)

and

d
dt

(
N∑
i=1

mi[ 12v
2
i + ui]

)
= 0; (8)

where ui = pi=[(
 − 1)�i]. Note that energy and momentum conservation in this simple version of
SPH is independent of the number of particles N .
Typically, a full implementation of SPH for astrophysical problems will add to Eq. (6) a treatment

of self-gravity (e.g., using one of the many grid-based or tree-based algorithms developed for N -body
simulations) and an arti�cial viscosity term to allow for entropy production in shocks. In addition,
we have assumed here that the smoothing length h is constant in time and the same for all particles.
In practice, individual and time-varying smoothing lengths hi(t) are almost always used, so that the
local spatial resolution can be adapted to the (time-varying) density of SPH particles (see [46] for
a rigorous derivation of the equations of motion from a variational principle in this case). Other
derivations of the SPH equations, based on the application of smoothing operators to the 
uid
equations (and without the use of a variational principle), are also possible (see, e.g., [24]).

1.2. Basic SPH equations

In this section, we summarize the basic equations for various forms of the SPH scheme currently
in use, incorporating gravity, arti�cial viscosity, and individual smoothing lengths.

1.2.1. Density and pressure
The SPH estimate of the 
uid density at ri is calculated as �i =

∑
j mjWij [cf. Eq. (5)]. Many

recent implementations of SPH use a form for Wij proposed by Hernquist and Katz [24]:

Wij = 1
2[W (|ri − rj|; hi) +W (|ri − rj|; hj)]: (9)

This choice guarantees symmetric weights Wij = Wji even between particles i and j with di�erent
smoothing lengths. For the interpolation kernel W (r; h), the cubic spline

W (r; h) =
1
�h3



1− 3

2

( r
h

)2 + 3
4

( r
h

)3 ; 06 r
h ¡ 1;

1
4 [2−

( r
h

)
]3; 16 r

h ¡ 2;

0; r
h¿2;

(10)

[41] is a common choice. Eq. (10) is sometimes called a “second-order accurate” kernel. Indeed,
when the true density �(r) of the 
uid is represented by an appropriate distribution of particle
positions, masses, and smoothing lengths, one can show that �i = �(ri) + O(h2i ) (see, e.g., [38]).
Depending on which thermodynamic evolution equation is integrated [see Eqs. (26) and (27)

below], particle i also carries either the parameter ui, the internal energy per unit mass in the 
uid
at ri, or Ai, the entropic variable, a function of the speci�c entropy in the 
uid at ri. Although
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arbitrary equations of state can be implemented in SPH, here, for simplicity, we consider only
polytropic equations of state. The pressure pi at ri is therefore related to the density by

pi = (
− 1)�iui (11)

or

pi = Ai�


i : (12)

The speed of sound in the 
uid at ri is ci = (
pi=�i)1=2.

1.2.2. Dynamical equations and gravity
Particle positions are updated either by

dri
dt
= Ci (13)

or the more general XSPH method

dri
dt
= Ci + �

∑
j

mj
Cj − Ci
�ij

Wij; (14)

where �ij=(�i+�j)=2 and � is a constant parameter in the range 0¡�¡ 1 [39]. Eq. (14), in contrast
to Eq. (13), changes particle positions at a rate closer to the local smoothed velocity. The XSPH
method was originally proposed as a way to minimize spurious interparticle penetration across the
interface of two colliding 
uid streams.
Generalizing Eq. (6) to account for gravitational forces and arti�cial viscosity (hereafter AV), the

velocity of particle i is updated according to

dCi
dt
= a(Grav)i + a(SPH)i ; (15)

where a(Grav)i is the gravitational acceleration and

a(SPH)i =−
∑
j

mj

[(
pi
�2i
+
pj
�2j

)
+�ij

]
3iWij: (16)

Various forms for the AV term �ij are discussed below. The AV ensures that correct jump conditions
are satis�ed across (smoothed) shock fronts, while the rest of Eq. (16) represents one of many
possible SPH-estimators for the acceleration due to the local pressure gradient (see, e.g., [38]).
To provide reasonable accuracy, an SPH code must solve the equations of motion of a large number

of particles (typically N� 1000). This rules out a direct summation method for calculating the
gravitational �eld of the system, unless special purpose hardware such as the GRAPE is used [64,27].
In most implementations of SPH, particle-mesh algorithms [16,53,10] or tree-based algorithms [24,13]
are used to calculate the gravitational accelerations a(Grav)i . Tree-based algorithms perform better
for problems involving large dynamic ranges in density, such as star formation and large-scale
cosmological simulations. For stellar interaction problems like those described in Section 2, density
contrasts rarely exceed a factor ∼ 102–103 and in those cases grid-based algorithms and direct solvers
are generally faster. Tree-based and grid-based algorithms are also used to calculate lists of nearest
neighbors for each particle exactly as in gravitational N -body simulations.
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1.2.3. Arti�cial viscosity
For the AV, a symmetrized version of the form proposed by Monaghan [39] is often adopted:

�ij =
−��ijcij + ��2ij

�ij
; (17)

where � and � are constant parameters, cij = (ci + cj)=2, and

�ij =




(Ci−Cj)·(ri−rj)
hij(|ri−rj|2=h2ij+�2)

if (Ci − Cj) · (ri − rj)¡ 0;

0 if (Ci − Cj) · (ri − rj)¿0
(18)

with hij = (hi + hj)=2. This form represents a combination of a bulk viscosity (linear in �ij) and a
von Neumann–Richtmyer viscosity (quadratic in �ij). The von Neumann–Richtmyer viscosity was
initially introduced to suppress particle interpenetration in the presence of strong shocks. Eq. (17)
provides a good treatment of shocks when � ≈ 1; � ≈ 2 and �2∼ 10−2 [39,24].
A well-known problem with the classical AV of Eq. (17) is that it can generate large amounts of

spurious shear viscosity. For this reason, Hernquist and Katz [24] introduced another form for the
AV:

�ij =




qi
�2i
+ qj

�2j
if (Ci − Cj) · (ri − rj)¡ 0;

0 if (Ci − Cj) · (ri − rj)¿0;
(19)

where

qi =

{
��icihi|3 · C|i + ��ih2i |3 · C|2i if (3 · C)i ¡ 0;

0 if (3 · C)i¿0
(20)

and

(3 · C)i = 1
�i

∑
j

mj(Cj − Ci) ·3iWij: (21)

Although this form provides a slightly less accurate description of shocks than Eq. (17), it does
exhibit less shear viscosity.
More recently, Balsara [2] has proposed the AV

�ij =

(
pi
�2i
+
pj
�2j

)
(−��ij + ��2ij); (22)

where

�ij =




(Ci−Cj)·(ri−rj)
hij(|ri−rj|2=h2ij+�2)

fi+fj
2cij

if (Ci − Cj) · (ri − rj)¡ 0;

0 if (Ci − Cj) · (ri − rj)¿0:
(23)

Here fi is the form function for particle i de�ned by

fi =
|3 · C|i

|3 · C|i + |3 × C|i + �′ci=hi ; (24)
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where the factor �′ ∼ 10−4− 10−5 prevents numerical divergences, (3 · C)i is given by Eq. (21), and

(3 × C)i = 1
�i

∑
j

mj(Ci − Cj)×3iWij: (25)

The form function fi acts as a switch, approaching unity in regions of strong compression
(|3 · C|i�|3 × C|i) and vanishing in regions of large vorticity (|3 × C|i � |3 · C|i). Consequently,
this AV has the advantage that it is suppressed in shear layers. Note that since (pi=�2i + pj=�

2
j ) ≈

2c2ij=(
�ij), Eq. (22) behaves like Eq. (17) when |3 · C|i�|3 × C|i, provided one rescales the � and
� in Eq. (22) to be a factor of 
=2 times the � and � in Eq. (17).

1.2.4. Thermodynamics
To complete the description of the 
uid, either ui or Ai is evolved according to a discretized

version of the �rst law of thermodynamics. Although various forms of these evolution equations
exist, the most commonly used are

dui
dt
=
1
2

∑
j

mj

(
pi
�2i
+
pj
�2j
+�ij

)
(Ci − Cj) ·3iWij (26)

and
dAi
dt
=

− 1
2�
−1i

∑
j

mj �ij (Ci − Cj) ·3iWij: (27)

We call Eq. (26) the “energy equation”, while Eq. (27) is the “entropy equation”. Which equation
one should integrate depends upon the problem being treated. Each has its own advantages and
disadvantages. Note that the derivation of Eqs. (26) and (27) neglects terms proportional to the time
derivative of hi. Therefore if we integrate the energy equation, even in the absence of AV, the total
entropy of the system will not be strictly conserved if the particle smoothing lengths are allowed
to vary in time; if the entropy equation is used to evolve the system, the total entropy would then
be strictly conserved when �ij = 0, but not the total energy [49,23]. For more accurate treatments
involving time-dependent smoothing lengths, see [46,58]. The energy equation has the advantage
that other thermodynamic processes such as heating and cooling [26] and nuclear burning [18] can
be incorporated more easily.

1.2.5. Integration in time
The results of SPH simulations involving only hydrodynamic forces and gravity do not depend

strongly on the actual time-stepping routine used, as long as the routine remains stable and accurate.
A simple second-order explicit leap-frog scheme is often employed. Implicit schemes must be used
when other processes such as heating and cooling are coupled to the dynamics [26]. A low-order
scheme is appropriate for SPH because pressure gradient forces are subject to numerical noise.
For stability, the timestep must satisfy a modi�ed Courant condition, with hi replacing the usual grid
separation. For accuracy, the timestep must be a small enough fraction of the dynamical time.
Among the many possible choices for determining the timestep, the prescription proposed by

Monaghan [39] is recommended. This sets

�t = CN Min(�t1;�t2); (28)
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where the constant dimensionless Courant number CN typically satis�es 0:1.CN. 0:8, and where

�t1 = Mini (hi=v̇i)1=2; (29)

�t2 = Mini

(
hi

ci + k(�ci + �Maxj|�ij|)

)
(30)

with k being a constant of order unity. If the Hernquist and Katz AV [Eq. (19)] is used, the quantity
Maxj|�ij| in Eq. (30) can be replaced by hi|3 ·C|i if (3 ·C)i ¡ 0, and by 0 otherwise. By accounting
for AV-induced di�usion, the � and � terms in the denominator of Eq. (30) allow for a more e�cient
use of computational resources than simply using a smaller value of CN .

1.2.6. Smoothing lengths and accuracy
The size of the smoothing lengths is often chosen such that particles roughly maintain some

predetermined number of neighbors NN . Typical values of NN range from about 20–100. If a par-
ticle interacts with too few neighbors, then the forces on it are sporadic, a poor approximation to
the forces on a true 
uid element. In general, one �nds that, for given physical conditions, the noise
level in a calculation always decreases when NN is increased.
At the other extreme, large neighbor numbers degrade the resolution by requiring unreasonably

large smoothing lengths. However, higher accuracy is obtained in SPH calculations only when both
the number of particles N and the number of neighbors NN are increased, with N increasing faster
than NN so that the smoothing lengths hi decrease. Otherwise (e.g., if N is increased while maintain-
ing NN constant) the SPH method is inconsistent, i.e., it converges to an unphysical limit. This can
be shown easily by deriving the dispersion relation for sound waves propagating in simple SPH sys-
tems [49]. The choice of NN for a given calculation is therefore dictated by a compromise between
an acceptable level of numerical noise and the desired spatial resolution (which is ≈ h˙ 1=N 1=d

N in
d dimensions) and level of accuracy.

1.3. Results of recent test calculations

The authors and their collaborators have performed a series of systematic tests to evaluate the ef-
fects of spurious transport in SPH calculations. These tests are presented in detail in [35], while here
we summarize the main results. Our tests include (i) particle di�usion measurements,
(ii) shock-tube tests, (iii) numerical viscosity measurements, and (iv) measurements of the spu-
rious transport of angular momentum due to AV in di�erentially rotating, self-gravitating con�g-
urations. The results are useful for quantifying the accuracy of the SPH scheme, especially for
problems where shear 
ows or shocks are present, as well as for problems where true mixing is
relevant. Other recent tests of SPH include those by Hernquist and Katz [24] and by Steinmetz and
M�uller [65].

1.3.1. Particle di�usion
Many of our tests focus on spurious di�usion, the motion of SPH particles introduced as an artifact

of the numerical scheme. Often applications require a careful tracing of the particle positions, and
in these cases it is essential that spurious di�usion be small. For example, SPH simulations can be
used to establish the degree of 
uid mixing during stellar collisions, which is of primary importance
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in determining the subsequent stellar evolution of the merger remnants (see Section 2.1). It must
be stressed that the amount of mixing determined by SPH calculations is always an upper limit. In
particular, low-resolution calculations tend to be noisy, and this noise can lead to spurious di�usion
of particles, independent of any real physical mixing of 
uid elements.
We have analyzed spurious di�usion by using SPH particles in a box with periodic boundary

conditions to model a stationary 
uid of in�nite extent. For various noise levels (particle velocity
dispersions) and neighbor numbers NN , we measure the rate of di�usion, quanti�ed by the di�usion
coe�cient

D ≡
〈
d�r2

dt

〉
: (31)

Here the brackets 〈 〉 denote a time average, and �r = (�x2 + �y2 + �z2)1=2 is the total distance
traveled by a particle due to spurious di�usion. Although strong shocks and AV in SPH calculations
can lead to additional particle mixing [39], particle di�usion is the dominant contribution to spurious
mixing in weakly shocked 
uids.
Once expressed in terms of the number density of SPH particles and the sound speed, these

di�usion coe�cients can therefore be used to estimate spurious deviations in particle positions in a
wide variety of applications, including self-gravitating systems. For each particle in some large-scale
simulation, this spurious deviation is estimated simply by numerically integrating

�r2≈
∫
D dt: (32)

The coe�cient D in the integrand of Eq. (32) depends on the particle’s velocity deviation from
the local 
ow, the local number density n of particles, and the local sound speed cs, so that these
quantities need to be monitored for each particle during the simulation. Such a scheme was success-
fully used to estimate spurious mixing in the context of stellar collisions [33], where typically (with
N = 3× 104 and NN ≈ 64) the di�usion coe�cient was very roughly D∼ 0:05csn−1=3.
For su�ciently low noise levels, the di�usion coe�cient essentially vanishes, as the particles

simply oscillate around equilibrium lattice sites. We say that such a system has “crystallized”. For a
neighbor number NN ≈ 64, a system of SPH particles will crystallize if the root-mean-square velocity
dispersion is less than about 3–4% of the sound speed. We �nd that crystallized cubic lattices are
unstable against perturbations, while lattice types with large packing fractions, such as hexagonal
close-packed, are stable. For this reason it may sometimes be better to construct initial data by
placing particles in an hexagonal close-packed lattice, rather than in a cubic lattice as is often
done.
The di�usion coe�cients have been measured using equal-mass particles. Sometimes, however,

SPH simulations use particles of unequal mass so that less-dense regions can still be highly re-
solved. To test the e�ects of unequal mass particles in a self-gravitating system, we constructed an
equilibrium n = 1:5 polytrope (a polytrope is an idealized model for a spherical star, characterized
by a relation of the form P = �
 between pressure P and density �; the polytropic index n is de-
�ned by 
= 1+ 1=n), using particle masses which increased with radius in the initial con�guration.
Allowing the system to evolve, we observed that the heaviest particles gradually migrated towards
the center of the star, exchanging places with less massive particles. For a polytrope modeled with
N ≈ 1:4×104 particles and a neighbor number NN ≈ 64, the distribution of particle masses is reversed



F.A. Rasio, J.C. Lombardi Jr. / Journal of Computational and Applied Mathematics 109 (1999) 213–230 221

within roughly 80 dynamical timescales. This is caused by the interactions among neighboring parti-
cles via the smoothing kernel. These interactions allow energy exchange, and equipartition of energy
then requires the heavier particles to sink into the gravitational potential well. Spurious mixing is
therefore a more complicated process in simulations which use unequal mass particles: each particle
has a preferred direction to migrate, and in a dynamical application this direction can be continually
changing. For simulations in which 
uid mixing is important, equal-mass particles are an appropriate
choice.

1.3.2. Shock tube tests
The di�usion tests just described are all done in the absence of shocks and without AV.

To test the AV schemes described in Section 1.2, we turn to a periodic version of the 1-D
Riemann shock-tube problem. Initially, 
uid slabs with constant (and alternating) density � and
pressure p are separated by an in�nite number of planar, parallel, and equally spaced interfaces.
We treat this inherently 1-D problem with both a 1-D and a 3-D SPH code. The 1-D code is nat-
urally more accurate, and provides a benchmark against which we can compare the results of our
3-D code. In both cases, periodic boundary conditions allow us to model the in�nite number of
slabs.
Using various values of � and �, we performed a number of such shock tube calculations with

our 3-D code, at both Mach numbers M≈ 1:6 and 13.2. We then compared the time variation of
the internal energy and entropy of the system against that of the 1-D simulation. Furthermore, since
any motion perpendicular to the bulk 
uid 
ow is spurious, we were also able to examine spurious
mixing in these simulations. We �nd that all three forms of AV can handle shocks well. For example,
with N = 104 and NN ≈ 64, there is better than 2% agreement with the 1-D code’s internal energy
vs. time curve when M≈ 1:6, and agreement at about the 3% level when M≈ 13:2. We also �nd
that both Eqs. (17) and (22), as compared to Eq. (19), allow less-spurious mixing and do somewhat
better at reproducing the 1-D code’s results.
Such simulations are a useful and realistic way to calibrate spurious transport, since the test

problem, which includes shocks and signi�cant 
uid motion, has many of the same properties as
real astrophysical problems. In fact, the recoil shocks in stellar collisions do tend to be nearly
planar, so that even the 1-D geometry of the shock fronts is realistic. The periodic boundary
conditions play the role of gravity in the sense that they prevent the gas from expanding to
in�nity.

1.3.3. Shear 
ows
To test the various AV forms in the presence of a shear 
ow, we impose the so-called slipping

boundary conditions on a periodic box, as is commonly done in molecular dynamics (see, e.g., [42]).
The resulting “stationary Couette 
ow” has a velocity �eld close to (vx; vy; vz) = (v0y=L; 0; 0) and
allows us to measure the numerical viscosity of the particles. As in the shock tube tests, we also
examine spurious mixing in the direction perpendicular to the 
uid 
ow. These shear tests there-
fore allow us to further investigate the accuracy of our SPH code as a function of the AV para-
meters and scheme. We �nd that both the Hernquist & Katz AV [Eq. (19)] and the Balsara
AV [Eq. (22)] exhibit less viscosity than the classical AV [Eq. (17)]. However, the classical AV
does allow signi�cantly less spurious mixing than the other forms. For all three forms of the AV,
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increasing � and � tends to damp out the noise and consequently decrease spurious mixing, but it
also increases the spurious shear viscosity.
Rotation plays an important role in many hydrodynamic processes. For instance, a collision be-

tween stars can yield a rapidly and di�erentially rotating merger remnant. Even in the absence of
shocks, AV tends to damp away di�erential rotation due to the relative velocity of neighboring
particles at slightly di�erent radii, and an initially di�erentially rotating system will tend towards
rigid rotation on the viscous dissipation timescale. In systems best modeled with a perfect 
uid,
ideally with a viscous timescale � =∞, any such angular momentum transport introduced by the
SPH scheme is spurious.
As a concrete example, we consider an axisymmetric equilibrium con�guration di�erentially

rotating with an angular velocity pro�le 
($) ˙ $−�, where $ is the distance from the rota-
tion axis and � is a constant of order unity. We then analytically estimate the viscous dissipa-
tion timescale for each of the three AVs discussed in Section 1.2. These analytic estimates are
found to closely match numerically measured values of the timescale. Both the Hernquist and Katz
AV [Eq. (19)] and the Balsara AV [Eq. (22)] yield longer viscous timescales than the classical
AV [Eq. (17)], and hence are better at maintaining the angular velocity pro�le. The Balsara AV
clearly does best in this regard, with a viscous timescale roughly N 1=2

N times larger than for the
classical AV.
When choosing values of AV parameters, one must weigh the relative importance of shocks,

shear, and 
uid mixing. For this reason, it is an application-dependent, somewhat subjective matter
to specify “optimal values” of � and �. We do, however, roughly delineate the boundaries of the
region in parameter space that gives acceptable results in [35].
Our results concerning the various AV forms can be summarized as follows (see [35] for more

details). We �nd that the AVs de�ned by Eqs. (17) and (22) do equally well both in their handling of
shocks and in their controlling of spurious mixing, and do slightly better than Eq. (19). Furthermore,
both Eqs. (19) and (22) do introduce less numerical viscosity than Eq. (17). Since Eq. (22), Balsara’s
form of AV, does indeed signi�cantly decrease the amount of shear viscosity without sacri�cing
accuracy in the treatment of shocks, we conclude that it is an appropriate choice for a broad range
of problems. This is consistent with the successful use of Balsara’s AV reported by Navarro and
Steinmetz [44] in their models of rotating galaxies.

2. SPH calculations of stellar interactions

The vast majority of recent 3-D calculations of dynamical interactions between stars have been
done using the SPH method. These include collisions [5,33], binary coalescence [14,55], common
envelope evolution [52,68], accretion 
ows [3,69], and tidal disruption [28].
SPH has many advantages over more traditional methods of numerical hydrodynamics for these

calculations. First, and perhaps most importantly, the advection of the 
uid while the stars are
moving along their initial trajectories is handled very easily by SPH. For example, in the case of
binary coalescence (see Section 2.2 below), one often has to follow the motion of the two stars
for several orbital periods before the �nal merger occurs. Merely tracking the motion of a star
across a large 3-D grid for many dynamical times can be very challenging when using an Eule-
rian scheme, especially in the presence of a sharp stellar surface (as in the case of neutron stars,
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which contain a fairly incompressible 
uid). In addition, other physical processes can be studied
much more easily using a Lagrangian scheme. An example is hydrodynamic mixing, which is a
crucial process in the study of certain stellar merger processes (see Section 2.1). Since chemical
abundances are passively advected quantities during a dynamical evolution, the chemical composi-
tion in the �nal 
uid con�guration can be determined after the completion of a calculation simply
by noting the original and �nal positions of all SPH particles and by assigning particle abundances
according to an initial pro�le. The adaptiveness of the scheme, with particles automatically concen-
trating in regions of higher density is also an important advantage, although this is more crucial
in situations involving large density contrasts, such as in simulations of star formation or galaxy
formation.

2.1. Stellar collisions

As a �rst illustration of the use of SPH for a typical stellar interaction problem, we summarize
in this section recent work on the numerical calculation of collisions between two main-sequence
stars.

2.1.1. Motivation
Close dissipative encounters and direct physical collisions between stars occur frequently in dense

star clusters. The dissipation of kinetic energy in close stellar encounters can have a direct in
uence
on the overall dynamical evolution of a cluster. Observational evidence for stellar collisions and
mergers in globular clusters is provided by the existence of large numbers of blue stragglers in
these systems. These are peculiar main-sequence (hydrogen burning) stars that appear younger and
more massive than all other, normal main-sequence stars in the cluster.
Blue stragglers have long been thought to be formed through the merger of two lower-mass stars,

either in a collision or following binary coalescence (see, e.g., the review by Livio [31]). Clear
indication for a collisional origin of blue stragglers has come from observations of globular clusters
with the Hubble Space Telescope. Large numbers of blue stragglers were found to be concentrated
in the cores of the densest clusters (such as M15 and M30).
Following early numerical work in 2-D (e.g., [61]), Benz and Hills [4,5] performed the �rst

3-D calculations of direct collisions between two main sequence stars using SPH. An important
result of this pioneering study was that collisions could lead to a thoroughly mixed merger remnant.
The mixing of fresh hydrogen fuel into the core of the remnant could then reset its nuclear clock,
allowing the blue straggler to burn hydrogen for a full main-sequence lifetime (tMS∼ 109 yr) after
its formation.

2.1.2. Recent results using SPH
The authors and their collaborators have re-examined collisions between main-sequence stars, and,

in particular, the question of mixing during mergers, by performing a set of numerical hydrodynamic
calculations using SPH [32,33,63,62]. This new work di�ers from the previous study of Benz and
Hills [4] by adopting more realistic models of globular cluster stars, and by performing numerical
calculations with increased spatial resolution.
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Fig. 1. Snapshots of density contours in the orbital plane for a parabolic collision between two main-sequence stars of
masses M1 and M2 = 0:75M1. The impact parameter has been chosen such that the corresponding point-mass orbit would
have a pericenter separation rp = 0:25(R1 + R2), where R1 and R2 = 0:56R1 are the stellar radii. There are eight density
contours, which are spaced logarithmically and cover four decades down from the maximum. The elapsed time in the
upper left corner of each frame is in units of the dynamical timescale (R31=GM1)1=2. Adapted from Lombardi et al. [33].

Snapshots from one of our recent calculations are shown in Fig. 1. The main new results of these
SPH calculations can be summarized as follows. Merger remnants produced by parabolic collisions
are always far from chemically homogeneous. In the case of collisions between two nearly identical
stars, the amount of hydrodynamic mixing during the collision is minimal. In fact, the �nal chemical
composition pro�le is very close to the initial pro�le of the parent stars. For two turno� stars (i.e.,
close to hydrogen exhaustion at the center), this means that the merger remnant is born with very
little hydrogen to burn in its core and, consequently, that the object may not be able to remain on
the main sequence for long. In the case of a collision between two stars of di�erent masses, the
chemical composition pro�le of the merger remnant tends to be more homogeneous, but it remains
true that little hydrogen is injected into its core.
At a qualitative level, these results can be understood very simply in terms of the requirement of

convective (dynamical) stability of the �nal hydrostatic equilibrium con�gurations. For non-rotating
remnants, convective stability requires that the entropic variable A [see Eq. (1)] increase mono-
tonically from the center to the surface (the so-called Ledoux criterion). If shock-heating could be
neglected entirely (which is not unreasonable for the low-velocity collisions occurring in globular
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clusters), then one could predict the �nal composition pro�le of a merger remnant simply by ob-
serving the composition and A pro�les of the parent stars. Since 
uid elements conserve both
their value of A (in the absence of shocks) and their composition, the �nal composition pro�le
of a remnant is constructed simply by combining mass shells in order of increasing A, from the
center to the outside. Many features of the results follow directly. For example, in the case of
a collision between two identical stars, it is obvious why the composition pro�le of the merger
remnant remains very similar to that of the parent stars, since shock-heating is signi�cant only
in the outer layers of the stars, which contain a very small fraction of the total mass. Further-
more, the dense, helium-rich material is concentrated in the deep interior of the parent stars, where
shock-heating is negligible, and therefore it remains concentrated in the deep interior of the �nal
con�guration.

2.2. Coalescing compact binaries

As a second illustration of the use of SPH for calculations of stellar interactions, we now turn to
the dynamical evolution of compact binary star systems (containing two compact objects — black
holes or neutron stars — in orbit around one another).

2.2.1. Motivation
Coalescing compact binaries are the most promising known sources of gravitational radiation

that could be detected by the new generation of laser interferometers now under construction. These
include the Caltech-MIT LIGO [1,11] and the European projects VIRGO [6] and GEO 600 [12].
In addition to providing a major new con�rmation of Einstein’s theory of general relativity, in-
cluding the �rst direct proof of the existence of black holes [17], the detection of gravitational
waves from coalescing binaries at cosmological distances could provide accurate independent mea-
surements of the Hubble constant and mean density of the universe [57,9,37]. For an excellent
recent review on the detection and sources of gravitational radiation, see Thorne [70]. Coalescing
compact binaries are important for other areas of astrophysics as well. In particular, many theo-
retical models of gamma-ray bursts have postulated that the energy source for the bursts could
be coalescing compact binaries at cosmological distances [15,43]. For a discussion of the hydrody-
namics of binary coalescence in the context of gamma-ray burst models, see [56] and references
therein.
Here we focus on binaries containing two neutron stars (hereafter NS), for which the �nal coa-

lescence is a purely hydrodynamic process that has been well-studied using SPH (as well as other
methods).

2.2.2. Hydrodynamics of the binary merger process
Hydrostatic equilibrium con�gurations for binary systems with su�ciently close components can

become dynamically unstable [8,66]. The physical nature of this instability is common to all bi-
nary interaction potentials that are su�ciently steeper than 1=r (see, e.g., [21, Section 3:6]). It
is analogous to the familiar instability of test particles in circular orbits su�ciently close to a
black hole [60, Section 12:4]. Here, however, it is the tidal interaction that is responsible for the
steepening of the e�ective interaction potential between the two stars and for the destabilization
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of the circular orbit. The physical properties of this instability, and its consequences for NS bi-
nary coalescence, have been studied by the authors and their collaborators, both numerically using
SPH ([54,55], hereafter RS; [51]), and using analytical perturbation methods ([29,30], hereafter
LRS, [34]).
The instability was �rst identi�ed by RS using SPH calculations where the evolution of binary

equilibrium con�gurations was calculated for two identical polytropes with 
 = 2. It was found
that when r. 3R (r is the binary separation and R the radius of an unperturbed NS), the orbit
becomes unstable to radial perturbations and the two stars undergo rapid coalescence. For r& 3R,
the system could be evolved dynamically for many orbital periods without showing any sign of orbital
evolution (in the absence of dissipation). Many of the results derived in RS and LRS concerning
the stability properties of NS binaries have been con�rmed recently in completely independent work
by New and Tohline [47] and by Zhuge et al. [72]. New and Tohline [47] used completely di�erent
numerical methods (a combination of a 3-D Self-Consistent Field code for constructing equilibrium
con�gurations and a grid-based Eulerian code for following the dynamical evolution of the binaries),
while Zhuge et al. [72] used SPH.

2.2.3. Typical SPH results
For simplicity, we describe here the dynamical evolution of an unstable, initially synchronized

binary containing two identical stars. Typical SPH results for this case are shown in Fig. 2. During
the initial, linear stage of the instability, the two stars approach each other and come into contact
after about one orbital revolution. In the corotating frame of the binary, the relative velocity remains
very subsonic, so that the evolution is adiabatic at this stage. This is in sharp contrast to the case of
a head-on collision between two stars on a free-fall, radial orbit, where shocks can be very important
for the dynamics. Here the stars are constantly being held back by a (slowly receding) centrifugal
barrier, and the merging, although dynamical, is much more gentle.
After typically 2–3 orbital revolutions the innermost cores of the two stars have merged and the

system resembles a single, very elongated ellipsoid. At this point a secondary instability occurs:
mass shedding sets in rather abruptly. Material is ejected through the outer Lagrange points of
the e�ective potential and spirals out rapidly. In the �nal stage, the spiral arms widen and merge
together. The relative radial velocities of neighboring arms as they merge are supersonic, leading
to some shock-heating and dissipation. As a result, a hot, nearly axisymmetric rotating halo forms
around the central dense core. The halo contains about 20% of the total mass and the rotation
pro�le is close to a pseudo-barotrope [67], with the angular velocity decreasing as a power-law

 ˙ $−� where �. 2 and $ is the distance to the rotation axis. The core is rotating uniformly
near breakup speed and contains about 80% of the mass still in a cold, degenerate state. If the
initial NS had masses close to 1:4M�, then most recent sti� EOS would predict that the �nal
merged con�guration is still stable and will not immediately collapse to a black hole, although it
might ultimately collapse to a black hole as it continues to lose angular momentum. The emission
of gravitational radiation during dynamical coalescence can be calculated perturbatively using the
quadrupole approximation (RS). Both the frequency and amplitude of the emission peak somewhere
during the �nal dynamical coalescence, typically just before the onset of mass shedding. Immediately
after the peak, the amplitude drops abruptly as the system evolves towards a more axially symmetric
state.
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Fig. 2. Evolution of an unstable binary containing two identical neutron stars. The stars are modeled as polytropes with

=3, corresponding to a sti� nuclear equation of state. Projections of all SPH particles onto the orbital plane of the binary
are shown at di�erent times (the orbital motion is in the counterclockwise direction). Units are such that G=M = R=1,
where G is the gravitational constant and R and M are the radius and mass of an unperturbed (spherical) star. The initial
orbital period is Porb' 24 in these units. Adapted from Rasio and Shapiro [54].
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Fig. 2. Continued
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