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ABSTRACT
In dense stellar clusters, binary–single and binary–binary encounters can ultimately lead to
collisions involving two or more stars during a resonant interaction. A comprehensive sur-
vey of multistar collisions would need to explore an enormous amount of parameter space,
but here we focus on a number of representative cases involving low-mass (0.4-, 0.6- and
0.8-M�) main-sequence stars. Using both smoothed particle hydrodynamics (SPH) calcula-
tions and a much faster fluid sorting software package (MMAS), we study scenarios in which
a newly formed product from an initial collision collides with a third parent star. By varying
the order in which the parent stars collide, as well as the orbital parameters of the collision
trajectories, we investigate how factors such as shock heating affect the chemical composition
and structure profiles of the collision product. Our simulations and models indicate that the
distribution of most chemical elements within the final product is not significantly affected by
the order in which the stars collide, the direction of approach of the third parent star, or the
periastron separations of the collisions. Although the exact surface abundances of beryllium
and lithium in the product do depend on the details of the dynamics, these elements are always
severely depleted due to mass loss during the collisions. We find that the sizes of the products,
and hence their collisional cross-sections for subsequent encounters, can be sensitive to the
order and geometry of the collisions. For the cases that we consider, the radius of the product
formed in the first (single–single star) collision ranges anywhere from roughly 2–30 times
the sum of the radii of its parent stars. The size of the final product formed in our triple-star
collisions is more difficult to determine, but it can easily be as large or larger than a typical
red giant. Although the vast majority of the volume in such a product contains diffuse gas
that could be readily stripped in subsequent interactions, we nevertheless expect the collisional
cross-section of a newly formed product to be greatly enhanced over that of a thermally relaxed
star of the same mass. Our results also help establish that the algorithms of MMAS can quickly
reproduce the important features of our SPH models for these collisions, even when one of the
parent stars is itself a former product.

Key words: hydrodynamics – blue stragglers – stars: chemically peculiar – stars: interiors –
globular clusters: general – galaxies: star clusters.

1 I N T RO D U C T I O N

1.1 Motivations

One exciting aspect of dense stellar systems is the simultaneous im-
portance of three principal areas of stellar astrophysics: dynamics,
evolution and hydrodynamics. Many simulation codes focus on one
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of these areas and have often been lifelong works in progress. The
first attempts at unifying these treatments into a coherent model
to describe clusters have begun only recently. In 2002 June, spe-
cialists in stellar dynamics, stellar evolution, hydrodynamics, clus-
ter observation, visualization and computer science gathered at the
American Museum of Natural History in New York City to be-
gin discussing a framework for MOdelling DEnse STellar systems,
without having to MODify Existing STellar codes extensively. The
workshop-style meeting, organized by P. Hut and M. Shara, became
known as MODEST-1 (Hut et al. 2003). The second such meet-
ing, MODEST-2, was organized by S. Portegies Zwart and P. Hut
and held in 2002 December at the Anton Pannekoek Institute in
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Amsterdam (Sills et al. 2003). From MODEST-2, a set of eight
‘working groups’ were established, each focusing on a different as-
pect of the MODEST endeavour.1 Attempting to integrate stellar
dynamics, evolution and hydrodynamics codes into one fully func-
tional package will be challenging, largely because each area treats
stellar properties that evolve on different time-scales. However, by
combining these areas, we will be able to better model the origins,
dynamics, evolution and death of globular clusters, galactic nuclei
and other dense stellar systems.

In this paper, our focus is on modelling hydrodynamic interac-
tions between stars. The goal is to develop a software module for
quickly generating collision product models, ultimately for any type
of stellar collision, that could be incorporated into simulations of
dense star clusters. Lombardi et al. (2002) presented an appropriate
formulation for treating parabolic single–single star collisions be-
tween low-mass main-sequence stars. Here we extend that study to
include situations in which one of the parent stars is itself a ther-
mally unrelaxed collision product. Such scenarios can occur during
binary–single or binary–binary interactions, when the time between
collisions is much less than the thermal relaxation time-scale.

Stellar collisions and mergers can strongly affect the overall en-
ergy budget of a cluster and even alter the timing of important dy-
namical phases such as core collapse. Furthermore, hydrodynamic
interactions are believed to produce a number of non-canonical ob-
jects, including blue stragglers, low-mass X-ray binaries, recycled
pulsars, double neutron star systems, cataclysmic variables and con-
tact binaries. Such stars and systems are among the most challenging
to model, but they are also among the most interesting observational
markers. Blue stragglers, for example, exist on an extension of the
main sequence, but beyond the turn-off point. Blue stragglers are
therefore appropriately named, as they are more blue than the re-
maining ordinary main-sequence stars, and, compared with other
stars of similar mass, are straggling behind in their evolution. This
aberration from the common path of stellar evolution is believed
to be due to mass transfer or merger in a binary system, or from
the direct collision of two or more main-sequence stars (for a re-
view, see Bailyn 1995). Predicting the numbers, distributions and
other observable characteristics of stellar exotica will be essential
for detailed comparisons with observations.

1.2 Stellar dynamics and stellar evolution

Stellar dynamics codes determine the motions of stars. The pri-
mary approaches to evolving clusters or galactic nuclei dynami-
cally are direct N-body integrations (e.g. Portegies Zwart, Hut &
Verbunt 1997a; Hurley et al. 2001), solving the Fokker–Planck
equation (e.g. Takahashi & Portegies Zwart 2000), Monte Carlo ap-
proaches (e.g. Joshi, Rasio & Portegies Zwart 2000; Watters, Joshi &
Rasio 2000; Giersz 2001; Joshi, Nave & Rasio 2001; Freitag & Benz
2002; Giersz & Spurzem 2003) and gaseous models (e.g. Spurzem
& Takahashi 1995). For a review of the ongoing NBODY effort for
accurate N-body simulations, see Aarseth (1999); for a general re-
view of cluster dynamics, see Meylan & Heggie (1997) and Heggie
& Hut (2003).

The most important quantities that a stellar evolution software
module can provide to a dynamics module are the stellar masses, as
well as the stellar radii if collisions are included. At least in prin-
ciple, these results could come from a live (i.e. concurrent with the

1 http://www.manybody.org/modest

cluster dynamics) stellar evolution calculation, from fitting formu-
lae, or from interpolation among prior calculations. As a result of
the large number of stars, it would be wasteful to expend a con-
siderable amount of time for a live computation of the evolution
of each star. For the ordinary stars for which the evolution is not
perturbed by an event such as a collision, it is much more efficient
and entirely appropriate to interpolate among, or to use analytic fit-
ting formulae based upon, previously calculated evolutionary tracks.
The parameter space associated with non-canonical stars, however,
is too enormous to be adequately covered by interpolation or fitting
formulae, and it will ultimately be necessary to invoke a full stellar
evolution calculation in parallel with the stellar dynamics for such
stars. Although live stellar evolution calculations have not yet been
combined with stellar dynamics codes, some parametrized codes,
such as SEBA (Portegies Zwart & Verbunt 1996), SSE (Hurley, Pols
& Tout 2000) and BSE (Hurley, Tout & Pols 2002), have been suc-
cessfully integrated (Portegies Zwart et al. 1997a, 2001; Shara &
Hurley 2002).

When physical collisions between stars are modelled in a cluster
calculation or a scattering experiment, it is usually done using a
method known as ‘sticky particles’, in which a collision product is
given a mass equal to the combined mass of the two parent stars and
a velocity determined by momentum conservation. In a collision
between two main-sequence stars, for example, the result would be
modelled as a rejuvenated, thermally relaxed main-sequence star.
This simple method is a reasonable first approximation for many
situations. However, there are important characteristics of collision
products that are neglected, including their rapid rotation, peculiar
composition profiles and enhanced sizes due to shock heating. If
the thermal relaxation time-scale of the collision product is much
less than the time until its next collision, then it is appropriate to
assume the product becomes instantaneously thermally relaxed, as
is done in the classic simulations of Quinlan & Shapiro (1990). This
approximation becomes questionable when the collision has been
mediated by a binary, as there is then at least one star in the imme-
diate vicinity of the collision product and the likelihood of a subse-
quent collision will depend sensitively on the thermally unrelaxed
size of the product.

Binaries are subject to enhanced collision rates for two primary
reasons: (i) their collision cross-section depends on the semima-
jor axis of the orbit, as opposed to the radius of a single star and
(ii) due to mass segregation, binaries tend to be found in the core
of the cluster, the densest and most active region. In clusters with
a binary fraction exceeding about 20 per cent, binary–binary colli-
sions are expected to occur more frequently than single–single and
binary–single collisions combined (Bacon, Sigurdsson & Davies
1996). It is probably not uncommon for binary fractions to be this
large: the inner core of NGC 6752, for example, is thought to have
a binary fraction in the range 15–38 per cent (Rubenstein & Bailyn
1997).

Binary populations can lead to complex and chaotic resonant in-
teractions. These interactions tend to exchange energy between the
binaries and the other stars in the cluster, and therefore are criti-
cal in determining its dynamics and observable characteristics (Hut
et al. 1992; Vesperini & Chernoff 1994). A star intruding on a bi-
nary could, depending on parameters such as the separation of the
binary and the velocity of the incoming star, escape to infinity, de-
stroy the binary, form a new binary with a star from the original or
form a triple. The outcomes of three-body encounters can be catego-
rized using a nomenclature based upon typical atomic processes (see
Heggie 1975, who introduced the use of terms such as ‘ionization’
and ‘exchange’, to describe the resultant scenarios). See Hurley &
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Shara (2002) for an informative narration of the intimate interac-
tions, usually involving binaries, that stars regularly undergo during
cluster evolution.

The STARLAB computing environment is a very useful tool for
modelling and analysing all types of stellar phenomena. The gen-
eral technique for using STARLAB to determine the cross-sections or
branching ratios for the various outcomes of binary interactions is
presented by McMillan & Hut (1996). They also highlight an ex-
ample set of cases in which a 0.6-M� star intrudes upon a binary
with a 0.8-M� primary and a 0.4-M� secondary. Their assumed
mass–radius relation, M/M� = R/R�, is appropriate for ther-
mally relaxed main-sequence stars and is applied both to the parent
stars and any collision products. They find that for binaries with
semimajor axes of 0.2, 0.1, 0.05 and 0.02 au, triple-star mergers
comprise about 1, 2, 5 and 15 per cent, respectively, of all merger
events. As the results of the present paper will help show, we ex-
pect that accounting for the enhanced, thermally unrelaxed size of
the first collision product will greatly increase these percentages as
well as the range of semimajor axes in which triple-star mergers are
significant.

Simulations of moderately dense galactic nuclei initially contain-
ing solar-mass main-sequence stars demonstrate that runaway merg-
ers can readily produce stars with masses � 100 M�. These massive
stars then undergo further mergers to produce seed black holes with
masses as large as ∼103 M� (Quinlan & Shapiro 1990). This pro-
cess may be responsible for massive black holes at the centres of
most galaxies, including our own. For star clusters, recent N-body
simulations reveal that runaway mergers can lead to the creation of
central black holes within a few million years (e.g. Portegies Zwart
et al. 1999; Portegies Zwart & McMillan 2002). With the help of
Monte Carlo simulations, Rasio, Freitag & Gürkan (2003) show that
the runaway process will occur in a typical cluster with a relaxation
time-scale of less than about 30 Myr. Observational evidence for
a possible intermediate-mass black hole in M15 has been recently
reported by Gerssen et al. (2002), although the data is more reason-
ably modelled with a large concentration of stellar-mass compact
objects (Baumgardt et al. 2003; Gerssen et al. 2003).

1.3 Stellar hydrodynamics

Mass loss and expansion due to shock heating when two stars col-
lide are examples of hydrodynamical processes that can ultimately
affect the future evolution of the cluster. Mostly using the smoothed
particle hydrodynamics (SPH, see Section 2.1) method, numerous
scenarios of stellar collisions and mergers have been simulated
in recent years, including collisions between two main-sequence
stars (Benz & Hills 1987; Lai, Rasio & Shapiro 1993; Lombardi,
Rasio & Shapiro 1996; Ouellette & Pritchet 1998; Sandquist, Bolte
& Hernquist 1997; Sills & Lombardi 1997; Sills et al. 1997, 2001,
2002; Freitag & Benz 2003), collisions between a giant star and
a compact object (Rasio & Shapiro 1991), and common envelope
systems (Rasio & Livio 1996; Terman, Taam & Hernquist 1994,
1995; Sandquist et al. 1998; Sandquist, Taam & Burkert 2000).
The first published SPH calculations of three-body encounters were
done by Cleary & Monaghan (1990), who performed over 100 very
low-resolution simulations and implemented a mass–radius relation
appropriate for white dwarfs. Other three- and four-body interaction
simulations include binary–binary encounters among n = 1.5 poly-
tropes (Goodman & Hernquist 1991) as well as neutron star–main-
sequence binary encounters with a neutron star, main-sequence or
white dwarf intruder (Davies, Benz & Hills 1994). See Rasio &
Lombardi (1999) for more information concerning the use of SPH

in stellar collisions, and see Shara (2002) for a qualitative overview
of the progress in stellar collision research.

If the structure and composition profiles of colliding stars were
available (perhaps from a live stellar evolution calculation) during a
cluster simulation, then the sticky particle method could be replaced
by a more detailed hydrodynamics module. SPH calculations could
then, at least in principle, be run on demand within this cluster sim-
ulation in order to determine the orbital trajectory of the product(s),
as well as their structure and chemical composition distributions.
However, at least 105 SPH fluid particles may be necessary to allow
an accurate treatment of the subsequent evolution of collision prod-
ucts (Sills et al. 2002). The trouble, therefore, is that the integration
of just a single interaction could consume hours, days or even weeks
of computing time (depending on the initial conditions, desired res-
olution and the available computational resources). Although the
use of equal-mass particles, or the more accurate SPH equations
of motion derived by Springel & Hernquist (2002), or both, could
decrease the total number of particles required, it is still currently
impractical to implement a full hydrodynamics calculation for every
close stellar encounter during a cluster simulation.

One approach for incorporating strong hydrodynamic interactions
and mergers into a grand simulation of a cluster, already successfully
implemented by Freitag & Benz (2002) in the context of galactic
nuclei, is to interpolate between the results of a set of previously
completed SPH simulations. The SPH data base of Freitag & Benz
treats all types of hyperbolic collisions between main-sequence stars
(mergers, fly-bys and cases of complete destruction), while also
varying the parent star masses as well as the eccentricity and peri-
astron separation of their initial orbit. The tremendous amount of
parameter space surveyed precludes having high enough resolution
to determine the detailed structure and composition profiles of the
collision products for all cases; however, critical quantities such as
mass loss and final orbital elements can be determined accurately.

A second possibility is to forgo hydrodynamics simulations and
instead to model collision products by physically motivated algo-
rithms and fitting formulae that sort the fluid from the parent stars
(Lombardi et al. 2002). One advantage of such an approach is that
it can handle cases in which one or both of the parent stars is itself a
former collision product (with chemical and structural profiles that
are substantially different from that of a standard isolated star of
similar mass and type).

In this paper, we use both SPH calculations and a much faster
fluid sorting algorithm to study scenarios in which a newly formed
collision product collides with a third parent star. By varying the
order and orbital parameters of the collision, we investigate how
factors such as shock heating affect the chemical composition and
structure profiles of the collision product. Section 2 presents our
procedures and numerical methods, both for our SPH calculations
(Section 2.1) and our fluid sorting algorithm (Section 2.2). SPH
results are presented in Section 3.1, and then compared with the
results of our fluid sorting algorithm in Section 3.2. In Section 4 we
discuss our findings and possible directions for future work.

2 P RO C E D U R E

2.1 Smoothed particle hydrodynamics

One means by which we generate collision product models is with
the parallel SPH code used in Sills et al. (2001). The original serial
version of this code was developed by Rasio (1991), specifically for
the study of stellar interactions such as collisions and binary mergers
(see, e.g. Rasio & Shapiro 1991, 1992, 1994). Introduced by Lucy
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(1977) and Gingold & Monaghan (1977), SPH is a hydrodynamics
method that uses a smoothing kernel to calculate local weighted av-
erages of thermodynamic quantities directly from Lagrangian fluid
particle positions (for a review, see Monaghan 1992). Each SPH
particle can be thought of as a parcel of gas that traces the flow of
the fluid, with the kernel providing the spatial extent of each particle
and the means by which it interacts with neighbouring particles.

The SPH code solves the equations of motion of a large number
of particles moving under the influence of both hydrodynamic and
self-gravitational forces. All of the scenarios we investigate using
SPH involve a 0.8-M� parent star, represented with 12 800 equal-
mass SPH particles, and two 0.6-M� parent stars, each represented
with 9600 equal-mass particles. Each of our SPH particles therefore
has a mass of 6.25 × 10−5 M�. For comparison, this particle mass is
between the masses of the central particles used in the N = 3 × 105

and 106 calculations of Sills et al. (2002), who used unequal-mass
particles to study in detail the outer layers of the fluid in a collision
between two 0.6-M� main-sequence stars. For our purposes, the use
of equal-mass particles is more appropriate, as it allows for higher
resolution in the stellar cores and does not waste computational
resources on the ejecta.

Local densities and hydrodynamic forces at each particle position
are calculated by appropriate summations over N N nearest neigh-
bours. The size of the smoothing kernel of each particle determines
the local numerical resolution and is adjusted during each time-step
to keep N N close to a predetermined value (48 for the present calcu-
lations). Neighbour lists for each particle are recomputed at every
iteration using a linked-list, grid-based parallel algorithm (Hockney
& Eastwood 1988).

The hydrodynamic forces acting on each particle include an ar-
tificial viscosity contribution that accounts for shocks. As in Sills
et al. (2001), we adopt the artificial viscosity form proposed by
Balsara (1995), with α = β = 5

6 , η2 = 0.01 and η′2 = 10−5. This
form treats shocks well and has the tremendous advantage that it
introduces only relatively small amounts of spurious shock heating
and numerical viscosity in shear layers (Lombardi et al. 1999).

A number of physical quantities are associated with each SPH
particle, including its mass, position, velocity and entropic variable
A. Here we adopt a monatomic ideal gas equation of state, appro-
priate for the stars in our mass range. That is, P = Aργ , where the
adiabatic index γ = 5

3 with P and ρ being the pressure and density,
respectively. The entropic variable is closely related (but not equal)
to specific entropy: both of these quantities are conserved in the
absence, and increase in the presence, of shocks.

Our code uses an FFT-based convolution method to calculate
self-gravity. The fluid density is placed on a zero-padded, three-
dimensional grid by a cloud-in-cell method, and then convolved
with a kernel function to obtain the gravitational potential at each
point on the grid. Gravitational forces are calculated from the po-
tential by finite differencing, and then interpolated for each particle
using the same cloud-in-cell assignment scheme. For each collision
simulation in this paper, the number of grid cells is 2563. The ejecta
leaving the grid interact with the enclosed mass simply as if it were
a monopole.

Following the same approach as in Sills et al. (2001), we begin
by using a stellar model from the Yale Rotational Evolution Code
(YREC) to help generate SPH models of the parent stars. We focus on
collisions involving 0.8- and 0.6-M� main-sequence stars, with a
primordial helium abundance Y = 0.25 and metallicity Z = 0.001.
Using YREC, these stars were evolved with no rotation to an age of
15 Gyr, the amount of time needed for the 0.8-M� star to reach
turn-off. The total helium mass fractions for the 0.6- and 0.8-M�

Figure 1. Fractional chemical abundances (by mass) of the elements He4,
C13, C12, N14, O16, Li6, Li7 and Be9 versus ln A, where the entropic variable
A ≡ P/ρ5/3 is in cgs units, for our 0.6-M� (solid curve) and 0.8-M� (dotted
curve) parent stars, as determined by YREC.

parent stars are 0.286 and 0.395, and their radii are 0.517 and 0.955
R�, respectively. See figs 1 and 2 of Lombardi et al. (2002) for ther-
modynamic and composition profiles of the parent stars presented
as a function of enclosed mass, as determined by YREC.

To generate our SPH models, we use a Monte Carlo approach
to distribute particles according to the desired density distribution,
determining values of A for each SPH particle from its position. To
minimize numerical noise, an artificial drag force is implemented,
with artificial viscosity turned off, to relax each SPH parent model
to the equilibrium configuration used to initiate the collision calcu-
lations. 14 different chemical abundance profiles are available from
the YREC parent models to set the composition of the SPH particles.
The abundances of an SPH particle are assigned according to the
amount of mass enclosed by an isodensity surface passing through
that particle in the relaxed configuration.

Fig. 1 plots fractional chemical abundances (by mass) versus ln A
in each parent star in its relaxed SPH configuration. Note that the
dense core of the turn-off star is at a smaller A, and its diffuse outer
layers are at a larger A, than all of the fluid in the 0.6-M� star,
which has direct consequences for the hydrodynamics of collisions
involving these stars. Also note that lithium and beryllium exist only
in the outermost layers of the parent stars.

We focus on triple-star collisions, modelling each collision sep-
arately and in succession. We do not consider fly-bys or grazing
collisions in our SPH calculations: all of our collisions lead to merg-
ers. We neglect any direct or indirect effects, including tidal forces,
that the third star may have on the dynamics of the first collision.
We assume that the second collision occurs before the first collision
product thermally relaxes: a reasonable approximation since con-
traction to the main-sequence occurs on a thermal time-scale, lasting
at least ∼106 yr for non-rotating products and as long as ∼108 yr
for rapidly rotating products (Sills et al. 1997, 2001), much longer
than the typical time between collisions in some binary–single or
binary–binary interactions (but see Section 4.2).

The orbital trajectory in all our collisions is taken to be parabolic.
This is clearly not appropriate for galactic nuclei, where collisions
are typically hyperbolic. However, in globular clusters, the velocity
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Figure 2. Before initiating the second collision, we rotate the final position
and velocity vectors of each SPH particle from the first collision: first by an
angle θ around the x-axis and then by an angle φ around the z-axis. The above
figure shows how a vector Q initially pointing along the z-axis is transformed
into the new vector Q′ by these rotations.

dispersion is only ∼10 km s−1, much less than the 600 km s−1 escape
speed from the surface of our 0.8-M� turn-off star, and hence all
single–single star collisions are essentially parabolic. For collisions
involving binaries (even including some hard binaries), the escape
speed can still be large compared with the effective relative velocity
at infinity. For example, consider two 0.8-M� turn-off stars in a cir-
cular orbit of radius 0.05 au in a globular cluster. This is a hard binary,
as each star moves with a velocity of about 60 km s−1 with respect
to the centre of mass of the binary, a speed significantly larger than
the cluster velocity dispersion. Yet, the effective relative velocity at
infinity for a collision between one of the binary components and an
intruder would typically not be much more than the orbital speed,
and therefore still significantly less than the escape speed from our
turn-off star. We therefore expect collisions between a slow intruder
and a binary component to be close to parabolic not only for all soft
binaries, but also for some (moderately) hard binaries

For the first single–single star collision, the stars are initially
non-rotating and separated by 5RTO, where RTO = 0.955 R� is
the radius of our turn-off star. The initial velocities are calculated
by approximating the stars as point masses on an orbit with zero
orbital energy and a periastron separation r p. A Cartesian coordinate
system is chosen such that these hypothetical point masses of mass
M1 and M2 would reach periastron at positions xi = (−1)i (1−
Mi/(M1 + M2))r p, yi = zi = 0, where i = 1, 2 and i = 1 refers to
the more massive star. The orbital plane is chosen to be z = 0. With
these choices, the centre of mass resides at the origin. For the first
collisions, the gravity grid maintains a fixed spatial extent from −4
RTO to +4 RTO along each dimension.

For the second collision, we want to control the relative orienta-
tion of the rotation axis and the orbital plane of the first collision
product (or, equivalently, the direction of approach of the third par-
ent star). To do so, we begin with the final state of the first colli-
sion and make two rotations to its particle positions and velocities,
through the angles θ and φ. More specifically, the first rotation is
clockwise through an angle θ about the x-axis, while the second ro-
tation is clockwise through an angle φ about the z-axis (see Fig. 2).
Finally, the particle positions and velocities are uniformly shifted
parallel to the x–y plane, and the third star is introduced such that
the centre of mass of the system will remain at the origin and the
periastron positions (in the two-body point-mass approximation)
will occur on the x-axis. In order to allow the bulk of the fluid to
remain within the gravity grid, the grid is extended up to a full
width of 10RTO in the x- and y-directions for some of the second
collisions.

We use the same iterative procedure as Lombardi et al. (1996) to
determine the bound and unbound mass. SPH structure and compo-
sition profiles presented in this paper result from averaging in 100
equally sized bins in the bound mass. Unfortunately, it is extremely
difficult to use SPH simulations to specify the equilibrium struc-
ture of the outermost few per cent of mass in any collision product.
Some SPH particles, although gravitationally bound, are ejected so
far from the centre of mass of the system that it would take many
dynamical time-scales for them to rain back on to the central product
and settle into equilibrium. Our requirement for stopping an SPH
calculation is that the entropic variable A, when averaged over iso-
density surfaces, increases outward over at least the inner 95 per
cent of the bound mass in the first collision product, and at least
92 per cent in the second collision product. Many calculations are
run longer in order to confirm that no rapid changes are still occur-
ring in the structure and chemical composition distributions.

2.2 Make Me A Star

The results of parabolic collisions between low-mass main-sequence
stars can be well explained by simple physical arguments. To a good
approximation, the fluid from the parent stars sorts itself such that
fluid with the lowest values of A sinks to the core of the collision
product while the larger A fluid forms its outer layers. Therefore,
the interior structure and the chemical composition profiles of the
collision product can be predicted accurately using simple algo-
rithms, instead of hydrodynamic simulations. Based on these ideas,
Lombardi et al. (2002) have recently created a publicly available
software package, dubbed Make Me A Star (MMAS).2 This package
produces collision product models close to those of an SPH code
in considerably less time, while still accounting for shock heating,
mass loss and fluid mixing.

Sorting the shocked fluid according to its entropic variable A gives
the A profile of the collision product as a function of the mass m
enclosed inside an isodensity surface. In the case of the non-rotating
products formed in head-on (r p = 0) collisions, knowledge of the
A(m) profile is sufficient to determine the pressure P(m), density
ρ(m) and radius r(m) profiles. Using the A profile determined by
sorting, MMAS numerically integrates the equation of hydrostatic
equilibrium with dm = 4πr 2ρ dr to determine the ρ and P pro-
files, which are related through ρ = (P/A)3/5. The outer boundary
condition is that P = 0 when m = MMMAS, where MMMAS is the
desired (gravitationally bound) mass of the collision product. The
virial theorem provides a check of the resulting profiles. This ap-
proach allows for the quick generation of collision product models,
without hydrodynamic simulations, and has already been tested with
single–single star collisions.

In this paper we present the results from MMAS for triple-star col-
lisions (see Section 3.2). Our procedure is simple. We call the MMAS

routine twice, using the output model from the first collision as one
of the input parent models in the second. These MMAS calculations
therefore account for the differences in shock heating that arise from
changing the order, or the periastron separations, or both, of the col-
lisions. In addition to investigating all of the scenarios considered
with the SPH code, we also use MMAS to examine more completely
how the sizes of products vary with the periastron separations of the
collisions. Furthermore, we include a 0.4-M� parent star of radius
0.357 R�, for which the structure is determined by YREC under the
same conditions described in Section 2.1.

2 http://faculty.vassar.edu/lombardi/mmas/
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For an off-axis collision, knowledge of the specific angular mo-
mentum distribution in the collision product is necessary to deter-
mine its structure fully, which by itself is a challenging problem
(Ostriker & Mark 1968; Clement 1978, 1979; Eriguchi & Mueller
1991; Uryu & Eriguchi 1995). Although MMAS outputs an approxi-
mate specific angular momentum profile of the first collision prod-
uct, we use only its entropic variable A(m) profile to help initiate
the second collision. That is, for one of the parent stars in the sec-
ond collision, we always give as input to MMAS the structure of
a non-rotating star with the desired A(m) profile, a simplification
that both eases and quickens computations. The validity of this
approximation is supported by the SPH calculations presented in
Section 3.1.3.

Lombardi et al. (2002) implemented version 1.2 of MMAS, while
the results of this paper use version 1.6. Besides cosmetic changes,
the primary enhancement is that the structure of the collision product
is integrated with a Fehlberg fourth- to fifth-order Runge–Kutta
method. In addition, we have fine-tuned the fitted parameter c3 from
its previous value of −1.1 to the new value −1.0, which has the
effect of distributing shocks slightly more uniformly throughout the
fluid.

Table 1. Summary data of six single–single star collisions.

Case M1 M2 rp T f R0.9,SPH
a R

′
0.9,MMAS

a MSPH MMMAS

(M�) (M�) (R�) (h) (R�) (R�) (M�) (M�)

d 0.8 0.6 0.000 6.24 0.87 0.88 1.304 1.301
e 0.8 0.6 0.368 8.09 1.20 1.24 1.369 1.362
j 0.6 0.6 0.000 6.24 0.91 0.72 1.132 1.121
jk 0.6 0.6 0.123 20.9 1.11 0.79 1.156 1.149
k 0.6 0.6 0.247 27.7 1.52 0.83 1.169 1.162

aThe SPH and MMAS radii should not be directly compared. The MMAS 90 per cent radii are for a
spherical, non-rotating star with the same A(m) profile as the collision product, while the SPH results
account for the rotation of the product. Furthermore, the SPH radii are measured at the time T f that
the simulation was terminated, before all the fluid has fallen back to the product, while the MMAS radii
account for the shock heating this fluid will produce.

Table 2. Summary data of collisions between a third star and a product of a first collision.

Case First M3 rp,2 θ φ T f T /|W | R0.9,SPH
a R

′
0.9,MMAS

a MSPH MMMAS

product (M�) (R�) (deg) (deg) (h) (R�) (R�) (M�) (M�)

1 d 0.6 0.00 0 0 8.78 0.001 1.2 1.66 1.765 1.747
2 j 0.8 0.00 0 0 15.7 0.001 1.3 1.36 1.769 1.760
3 e 0.6 0.00 0 0 12.0 0.011 1.7 2.31 1.799 1.778
4 e 0.6 0.0955 0 0 12.7 0.059 2.0 3.09 1.851 1.825
5 k 0.8 0.198 0 0 23.1 0.060 2.5 2.05 1.868 1.862
6 k 0.8 0.198 45 0 23.1 0.056 2.4 2.05 1.862 1.862
7 k 0.8 0.00 0 0 21.0 0.005 1.8 1.48 1.794 1.789
8 k 0.8 0.00 90 90 15.7 0.005 1.7 1.48 1.788 1.789
9 k 0.8 0.00 45 90 11.5 0.006 1.7 1.48 1.793 1.789

10 k 0.8 0.00 45 0 15.7 0.006 1.8 1.48 1.794 1.789
11 jk 0.8 0.00 0 0 14.8 0.004 1.5 1.44 1.792 1.781
12 j 0.8 0.505 0 0 23.1 0.077 2.4 2.25 1.883 1.866
13 jk 0.8 0.505 0 0 23.1 0.091 2.9 2.48 1.893 1.890
14 k 0.8 0.505 0 0 23.1 0.092 3.3 2.60 1.893 1.902
15 k 0.8 0.505 90 90 23.1 0.081 3.2 2.60 1.893 1.902
16 k 0.8 0.505 45 90 23.1 0.088 3.3 2.60 1.893 1.902
17 k 0.8 0.505 45 0 23.1 0.090 3.3 2.60 1.895 1.902
18 k 0.8 0.505 90 0 23.1 0.079 3.1 2.60 1.894 1.902
19 k 0.8 0.505 180 0 23.1 0.064 2.7 2.60 1.885 1.902
20 k 0.8 0.758 45 0 39.3 0.091 4.2 2.90 1.912 1.917

aThe same caution must be exercised when comparing the SPH and MMAS radii as with the data of Table 1.

3 R E S U LT S

Table 1 summarizes five single–single star simulations of parabolic
collisions. The table lists: the case name; the masses M1 and M2 of
the parent stars i = 1 and 2, respectively; the periastron separation
r p of the initial orbit; the stellar time T f when the calculation was
terminated; the average radius of the isodensity surface enclosing
90 per cent of the bound mass, as determined by SPH, R0.9,SPH, and
by MMAS, R′

0.9,MMAS; and the final mass of the collision product
as calculated both by SPH, MSPH and by MMAS, MMMAS. Previous,
higher-resolution SPH simulations of cases e and k (see Sills et al.
2001; Lombardi et al. 2002) yield no significant differences from
the present calculations. For the cases in Table 1, the mass loss
percentage ranges from about 2 to 7 per cent. Comparing the last
two columns of this table, we see that the mass loss prescription
of MMAS reproduces the SPH results for the final product mass to
within 1 per cent in all six cases.

Table 2 summarizes scenarios in which a collision product from
Table 1 (referred to as the first collision product) is collided with a
third parent star. The table shows: the case number; the name of the
single–single collision that yielded the first collision product; the
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mass M3 of the third (i = 3) parent star; the periastron separation
r p,2 of the second collision; the rotation angles θ and φ (see Fig. 2);
the time T f when the calculation was terminated; the ratio of kinetic
to gravitational binding energy T /|W | in the centre-of-mass frame
of the final SPH collision product model; the average radius of
the isodensity surface enclosing 90 per cent of the bound mass, as
calculated by SPH, R0.9,SPH and by MMAS, R0.9,MMAS; and the mass of
the product as calculated both by SPH, MSPH and by MMAS, MMMAS.

All 20 cases presented in Table 2 involve two 0.6-M� stars
and a single 0.8-M� star. If mass loss were neglected completely,
the mass of the final collision product would therefore simply be
2.0 M�. The SPH calculated masses range from about 1.76 to
1.91 M�, with the largest mass loss occurring for cases with suc-
cessive head-on collisions.

The cases in Table 2 group naturally together in a variety of ways.
Cases 1 and 2 each involve two head-on collisions. Cases 5 and 6
differ only in the orientation of the spin axis of the first collision
product, and an identical statement can be made for cases 7–10,
as well as for cases 14–19. Cases 2, 11 and 7 differ only in the
periastron separation of the first collision, as do cases 12, 13 and
14. Also, many of the cases differ only in the periastron separation
for the second collision: for example, cases 7, 5 and 14, as well as
cases 10, 6, 17 and 20.

Even without running an SPH or MMAS calculation, one can gen-
erate a ‘zeroth-order’ collision product model, valid for all 20 cases,
simply by sorting the fluid of the three parent stars by their A values,
with A increasing from the core to the surface. In those regions in
which more than one parent star contributes, chemical abundances
can be determined by an appropriate weighted average: the fraction
of fluid with entropic variable in some range (A, A + A) that
originated from any one parent star is just equal to the fluid mass in
that same range from that star divided by the total fluid mass in that
range from all three stars.

Fig. 3 shows the composition profiles resulting from this exercise
for the merger of two 0.6-M� stars and a 0.8-M� star, with shock

Figure 3. Fractional chemical abundances (by mass) versus enclosed mass
fraction m/M for a ‘zeroth-order’ collision product model generated by
sorting the fluid from one 0.8- and two 0.6-M� stars according to their
A values, without accounting for mass loss, shock heating or fluid mixing.
Here m is the mass enclosed within a surface of constant density and M is
the total mass of the collision product, 2.0 M� in this model.

heating, mass loss and fluid mixing all completely neglected. The
innermost 6 per cent and outermost 9 per cent of this collision prod-
uct model consist of fluid that originated entirely in the 0.8-M�
parent star, and the profiles there consequently mimic those of the
innermost and outermost regions, respectively, of that parent. The
profiles in the intermediate region, where all three parent profiles
contribute, can be understood by looking back at Fig. 1 and remem-
bering that the smaller A fluid is placed deeper in the product. For
example, the C13 near m/M = 0.13 originated in the 0.6-M� star,
while the higher A, C13-rich fluid peaked near m/M = 0.5 origi-
nated mostly in the 0.8-M� star. Although some of the composition
profiles turn out to agree reasonably with our more precise SPH and
MMAS calculations, the structure of the star produced by this simple
merging procedure does not. In particular, because shock heating is
neglected, energy is not conserved during the merger, and the re-
sulting radius for the product is a considerable underestimate. The
primary usefulness of the model presented in Fig. 3 is that it serves
as a reference to help us evaluate in what ways the shock heating,
mass loss and fluid mixing treated by our SPH and MMAS calcula-
tions affect the composition and structure profiles of the collision
product.

3.1 Smoothed particle hydrodynamics

3.1.1 Varying the collision order

Cases 1 and 2 each involve two consecutive head-on collisions be-
tween the same three parent stars. The only variation between these
two cases is the order in which the collisions occur: in case 1, the
0.8-M� parent is involved in the first collision, while in case 2 it
is involved in the second. Fig. 4 shows the resulting chemical com-
position profiles of the collision products. Because the innermost
few per cent of the final collision products consist of low-A fluid
that originated in the centre of the 0.8-M� parent (see Fig. 5), the
composition profiles are nearly identical there. More generally, the
resulting profile of each chemical species is at least qualitatively
similar throughout the products. The differences in the composition
profiles of Fig. 4 are arguably most pronounced for C13. In the parent
stars, this element exists in appreciable amounts only in a relatively
thin shell, and, as shown in Fig. 1, this shell is at a higher value of
A in the 0.8-M� star than in the 0.6-M� star. Exactly where the
C13-rich fluid is ultimately deposited depends on the details of the
shock heating, and hence the order in which the stars collide. In
particular, the final C13 profile in the case 1 product has two distinct
peaks at enclosed mass fractions of m/M � 0.1 and 0.5 (as in our
zeroth-order model, see Fig. 3), whereas the case 2 profile has a
single extended peak centred near m/M = 0.2. Fig. 6 displays, as
a function of enclosed mass fraction m/M within the product, how
each parent contributes to the overall C13 profile. The inner peak in
the case 1 profile is due mostly to C13 that originated in the 0.6-M�
parent stars, while the outer peak is due mostly to the higher-A,
C13-rich fluid from the 0.8-M� parent. In case 2, the 0.8-M� star is
involved in only the second collision. It therefore experiences less
shock heating than in case 1 and more of its fluid is able to penetrate
to the core of the final collision product. Consequently, much of the
C13 from the 0.6-M� stars is displaced out to larger enclosed mass
fractions, while the C13 from the 0.8-M� star is shifted inward. The
net result is the single extended peak that includes C13 from all three
parent stars.

The detailed differences between the composition profiles of the
other elements in Fig. 4 can be understood by considering the A and
composition profiles of the parent stars, along with the distribution

C© 2003 RAS, MNRAS 345, 762–780



Collision products of triple-star mergers 769

Figure 4. Chemical abundance profiles for the case 1 (dashed curve) and
case 2 (dotted curve) collision products, as determined by SPH calculations.
The chemical abundance fractions are averaged on isodensity surfaces that
enclose a mass fraction m/M in the final collision product.

and amount of shock heating. For example, the core of the 0.8-M�
parent star is rich in He4 and N14, but depleted of C12 (see Fig. 1).
The lower shock heating to the 0.8-M� star in case 2 allows more of
its core to sink to the centre of the collision product. Consequently,

Figure 5. Fractional contribution f i to the mass of the collision product
from each parent star as a function of enclosed mass fraction m/M within
the product for case 1 (top) and case 2 (bottom), as determined by SPH
calculations. Each of these cases involves head-on (rp = rp,2 = 0) collisions
among one 0.8- and two 0.6-M� stars; however, in case 1 the 0.8-M� star
is part of the initial collision, whereas in the case 2 scenario it is part of the
second collision. Different line types are used for each parent star: i = 1
(solid curve), i = 2 (dotted curve) and i = 3 (dashed curve). Parents with an
index of i = 1 or 2 are involved in the first collision, while i = 3 refers to
the third parent star from the second collision. The contribution profile from
the 0.8-M� parent is labelled in each case.

Figure 6. Fractional abundance of C13 versus the enclosed mass fraction
m/M in the final collision products of case 1 (dashed curve) and case 2
(dotted curve), as determined by SPH calculations. The top pane shows
the total C13 abundance. The second pane shows the contribution from the
0.8-M� parent, and the bottom two frames show the contribution from the
0.6-M� parents, so that the curves in the bottom three panes add up to give
the overall profile shown in the top pane.

the He4 and N14 levels are enhanced compared with case 1, while
the C12 levels are diminished, for final enclosed mass fractions m/M
in the range from 0.05 to 0.2.

The mass that is ejected during the collisions comes preferentially
from the outer layers of the parent stars, exactly where elements such

Figure 7. Structural profiles for the case 1 (dashed curve) and case 2 (dotted
curve) collision products, as determined by SPH calculations: the enclosed
mass fraction m/M, the natural logarithm of the average entropic variable
A, and the base 10 logarithm of the average density ρ, are all plotted as a
function of the average distance r from the centre of the collision product to
an isodensity surface. Units are cgs.
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as Li6, Li7 and Be9 exist. The surface abundances (by mass) in the
final case 1 collision product for these three elements are approxi-
mately 3 × 10−10, 4 × 10−9 and 2 × 10−10, which is, respectively,
about 30, 6 and 3 times less than at the surface of the 0.8-M� parent
star. In case 2, the surface layers are comparably depleted in these
elements: the corresponding abundances are 2 × 10−10, 6 × 10−9

and 2 × 10−10.
The bottom three panes in Fig. 4 show that the distribution of Li6,

Li7 and Be9 does differ somewhat between cases 1 and 2. Because
the 0.8-M� star suffers less shock heating in case 2 than in case 1,
it loses less of its mass as ejecta and, consequently, can contribute
more Li6, Li7 and Be9 to the outermost layers of the final collision
product. Furthermore, when the fluid containing Li7 and Be9 from
the 0.6-M� stars is involved in both collisions (case 2), it is shocked
more and ultimately either ejected or deposited in the outer ∼10 per
cent of the product. However, in case 1, the one 0.6-M� star that
is involved in only a single collision can deposit its Li7 and Be9 of
comparatively low A deeper in the product, resulting in flattened
profiles extending further into the interior.

Fig. 5 shows, as a function of m/M, the fractional contribution
to the mass of the final product from each of the three parent stars
for cases 1 and 2, as determined by SPH calculations. In each case,
the innermost few per cent of the final collision product consists
of low-A fluid that originated in the centre of the 0.8-M� parent.
Because the first collision in cases 1 and 2 is head-on (r p = 0), fluid
from the first two parent stars is not distributed axisymmetrically in
the first collision product (the composition distribution is therefore
not axisymmetric, even though the structure of the first product is).
In case 2, the 0.8-M� star strikes the first collision product on the
side with fluid from the first (i = 1) 0.6-M� parent. Fluid from
the first 0.6-M� parent is therefore heated more than fluid from
the second one, and the former is buoyed out to larger enclosed
mass fractions in the final product. In off-axis collisions, rotation
induces shear mixing, so that if two identical stars are involved in
the first collision, they contribute essentially equally within the final
product: f 1 = f 2.

The profiles of Figs 4 and 6 demonstrate that the order in which
the stars collide can influence shock heating enough to affect, at
least slightly, the chemical composition distribution within the final
collision product. While the difference in resulting chemical com-
position profiles is small, Fig. 7 shows that the difference in the
structure of the collision product would be completely negligible
for most purposes. Although changing the order of these head-on
collisions affects how the shock heating is distributed (and hence
where any particular fluid element settles), it does not greatly af-
fect the overall amount of heating that occurs nor the amount of
mass that is ejected. At least for low Mach number collisions (as
with parabolic collisions) that are nearly head-on (so that the merger
occurs quickly), shock heating can be thought of as a mild pertur-
bation; consequently, the final A profile, and hence the structure
of the final product, is not sensitive to the collision order in such
cases.

3.1.2 Varying the direction of approach of the third parent

We now investigate how the direction of approach of the third star
toward the first collision product affects the final collision product.
One might wonder, for example, whether an impact in the equatorial
plane of the first collision product (θ = 0◦ or 180◦) would yield
a qualitatively different result compared with the impact instead
occurring on the rotation axis. Cases 5 and 6, cases 7–10 and cases
14–19 can all be used to examine such effects, as the cases within

each set differ only in the angles θ and φ, by which the first product
is rotated (see Fig. 2). We find that while the spin of the final product
is of course sensitive to such variations (e.g. see the T /|W | column
of Table 2), the composition profiles are nearly unaffected.

Fig. 8 shows the chemical abundance profiles of the collision
product resulting in four cases in which the angle of approach of
the third star is varied (cases 14, 15, 17 and 19). Each of these cases
involves an off-axis collision between a case k collision product
and a 0.8-M� star. In case 14, the spin vector of the first collision
product is parallel to the orbital angular momentum of the second
collision. In the other cases, the case k collision product is tilted in
various ways according to the values of θ and φ listed in Table 2. In
case 19, for example, the case k collision product is flipped over by
180◦ so that it rotates in an opposite direction to that of the case 14
rotation.

In case 14, the fluid of the first product is rotating with the motion
of the third star as it impacts (θ = 0◦). Consequently, the merger
process is relatively gentle. For larger θ , the relative impact ve-
locity is larger and the merger is somewhat more violent. Cases
14, 17, 15 and 19 have θ values of 0◦, 45◦, 90◦ and 180◦, respec-
tively; as θ increases, slightly less fluid from the 0.8-M� star can
sink down into the core of the final collision product, and the C13

profile rises at a slightly smaller enclosed mass fraction m/M (see
Fig. 8). Nevertheless, as shown in Fig. 9, the contribution of each
parent star to the product varies very little from case to case. Con-
sequently, the chemical profiles in the collision products also vary
little as θ is changed. Indeed, the He4, C12, N14 and O16 profiles in
Fig. 8 all look remarkably similar to the corresponding profiles in
Fig. 3 for our simple, zeroth-order model. However, the C13 profile
has a single broad peak, for the same reasons as in case 2. Fur-
thermore, because of mass loss, the beryllium and lithium surface
abundances are found to be greatly less than our zeroth-order model
(which neglects mass loss) would indicate.

The structure of the final collision product (see Fig. 10) can
be affected by the direction of approach for two primary reasons.
First, having larger relative velocity at impact leads to larger shock
heating. Notice, for example, how the case 19 product has the largest
A values in Fig. 10. Secondly, having less angular momentum in the
system leads to a more compact product. For example, the case 19
product has the largest enclosed mass fraction for almost any av-
erage radius r, despite the additional shock heating undergone in
this case. Furthermore, by comparing the final masses MSPH listed
in Table 2 for the products of cases 5 and 6, of cases 7–10 and of
cases 14–19, one can see that the amount of mass ejected is only
very weakly dependent upon the direction of approach of the third
parent star, varying by about 0.01 M� or less within each of these
sets of cases.

3.1.3 Varying the periastron separations of the collisions

We now investigate the effects that the periastron separation of the
first collision has on the final collision product. Cases 12, 13 and
14 all involve off-axis collisions with first collision products that
are created from the same 0.6-M� parent stars but with different
periastron separations (cases j, jk and k, respectively), and hence
different inherited angular momenta. Fig. 11 plots the fractional
contribution of the third parent star within the merger product. In
all cases, the low-A core of the 0.8-M� star is able to sink to the
core of the final product. However, as the periastron separation of
the first collision is increased, the two 0.6-M� parent stars expe-
rience more shock heating, and the 0.8-M� parent is able to have
more fluid penetrate down to the depths near m/M ∼ 0.15.
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Figure 8. Chemical abundance profiles for the final collision product of
cases 14 (solid curve), 15 (dotted curve), 17 (long-dashed curve) and 19
(short-dashed curve), as determined by SPH calculations. In these scenarios
the same rotating first collision product collides off-axis with a 0.8-M� star,
with a different orientation of the rotation axis of the first collision product
in each case.

Fig. 12 presents chemical composition profiles of the final colli-
sion product for these three cases. These profiles demonstrate that
the angular momentum of the first collision product has only a small
effect on the final collision product. As expected from Fig. 11, the

Figure 9. Fractional contribution f 3 from the third parent star as a function
of enclosed mass fraction m/M within the collision product of cases 14
(solid curve), 15 (dotted curve), 17 (long-dashed curve) and 19 (short-dashed
curve), as determined by SPH calculations. In these scenarios, the first two
parent stars are both 0.6 M�; the third parent star is 0.8 M� and approaches
from a different angle θ relative to the rotation of the first collision product
in each case. The fractional contribution from each of the first two parent
stars is essentially equal and can therefore be determined easily from the f 3

curve: f 1 = f 2 = (1 − f 3)/2.

Figure 10. Structural profiles for the final collision product of cases 14
(solid curve), 15 (dotted curve), 17 (long-dashed curve) and 19 (short-dashed
curve), as determined by SPH calculations. The particular quantities plotted
are as in Fig. 7.

profiles of the three cases are essentially identical in the innermost
5 per cent of the bound mass, because only the core of the 0.8-M�
parent contributes there. The abundance profiles of each chemical
species are at least qualitatively, and usually quantitatively, sim-
ilar throughout the products. The variations that do exist can be
understood in terms of the different shock heating during the first
collisions. Because the amount of shock heating increases with pe-
riastron separation, the case j, jk and k products have increasingly
larger values of A at almost any enclosed mass fraction (this trend is
not immediately evident in Fig. 13 only because ln A is being plotted
versus radius and not enclosed mass). The fluid from the 0.8-M�
star is therefore able to penetrate the case j product the least, the
case jk product a little more, and the case k product even more still
(see Fig. 11). Consequently, the rise in C12 and C13 abundance is
pushed out to increasingly larger enclosed mass fractions m/M in
Fig. 12 as one considers cases 12–14, in that order. In case 12 and
arguably case 13, the cases with the smaller amounts of shock heat-
ing, traces of two separate peaks are evident in the C13 profile. As
in our zeroth-order model (see Fig. 3), the inner peak is due mostly
to C13 from the 0.6-M� stars while the outer peak is mostly due to
C13 from the 0.8-M� star.

Fig. 13 shows that the structure of the bulk of the fluid in the final
collision product is not significantly affected by the periastron sep-
aration of the first collision, and hence the spin of the first collision
product. There is, nevertheless, a visible trend for the enclosed mass
fraction at a given average radius to decrease for products with more
spin. For example, the isodensity surface with an average radius of
3.2 R� encloses about 94 per cent of the case 12 product, about
92 per cent for the case 13 product, and only about 90 per cent of
the case 14 product. Such a trend is expected, simply because of
expansion due to rotational support.

Cases 10, 17 and 20 can be used to investigate the effects that the
periastron separation of the second collision has on the profiles of
the final product. Cases 10, 17 and 20 involve collisions between a
case k product and a 0.8-M� star, with periastron separations for
the second collision of r p,2 = 0, 0.505 and 0.758 R�, respectively,
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Figure 11. Fractional contribution of the third parent star, as determined
by SPH calculations, within the final collision product for three scenar-
ios that differ only in the periastron separation rp of the first collision:
cases 12 (solid curve), 13 (dotted curve) and 14 (dashed curve). In all
three cases, the first two parent stars are 0.6 M�, while the third parent is
0.8-M�. The 0.8 M� parent penetrates into the product the least in case 12,
because of the relatively small amount of shock heating suffered by the first
product during the first collision in this case.

corresponding to a number of passages or interactions np = 1, 2 and
3, again, respectively. See the discussion of fig. 6 in Lombardi et al.
(1996) for the details of how np is determined.

Fig. 14 reveals the way in which the 0.8-M� parent contributes
to the final product in each of these three cases. As usual, the low-A
core of the 0.8-M� star sinks to the core of the collision product.
As the periastron separation of the second collision is increased,
the resulting collision products tend toward larger mass-averaged

Figure 12. Chemical abundance profiles, as determined by SPH calcula-
tions, for the final collision product for three scenarios that differ only in
the periastron separation rp of the first collision: cases 12 (solid curve), 13
(dotted curve) and 14 (dashed curve).

Figure 13. Structural profiles, as determined by SPH calculations, for the
final collision product for three scenarios that differ only in the periastron
separation rp of the first collision: cases 12 (solid curve), 13 (dotted curve)
and 14 (dashed curve). The particular quantities plotted are as in Fig. 7.

values of A. Fluid from the 0.8-M� star therefore can penetrate the
case 10 product the most, the case 17 product a little less and the
case 20 product even less.

Fig. 15 shows that the composition profiles in these three cases are
essentially identical in the innermost few per cent of the collision
products. Indeed, the abundance profiles are again at least qual-
itatively, and usually quantitatively, similar throughout the entire
product. As before, slight variations do result from having different
distributions of shock heating. In particular, the rise in C12 and C13

abundance is drawn in to smaller enclosed mass fractions m/M in
Fig. 15 as one examines cases 10, 17 and 20, in that order. Fig. 16
reveals the differences in the final product structure for these three
cases. The top pane shows that the mass distribution of the final
product is affected by the periastron separation of the second col-
lision in a way that is simple to understand: increasing the second
periastron separation increases both shock heating and rotation, and
so a given radius encloses less mass.

3.2 Fluid sorting with MMAS

3.2.1 Comparison with SPH results

In Section 3.1.2 we found that the direction of approach of the third
star only weakly affects the profiles and mass of the final product.
We therefore do not account for the angles θ and φ of the second
collision when applying our fluid sorting package MMAS. As a result,
the product model that MMAS generates is identical within each of
the following sets: cases 5 and 6, cases 7–10 and cases 14–19. In all
20 cases presented in Table 2, the final product mass given by MMAS

agree with those from SPH to within 1.5 per cent.
Fig. 17 compares the chemical composition profiles of final col-

lision products, as determined by both MMAS and SPH models, for
two scenarios (cases 1 and 2) in which each collision is head-on
(r p = r p,2 = 0). These cases involve the same three parent stars;
however, the order in which the stars collide is varied. The MMAS

abundance profiles maintain the same qualitative shape as those of

C© 2003 RAS, MNRAS 345, 762–780



Collision products of triple-star mergers 773

Figure 14. Fractional contribution of the third parent star, as determined by
SPH calculations, within the final collision product for three scenarios that
differ only in the periastron separation rp,2 of the second collision: cases 10
(solid curve), 17 (dotted curve) and 20 (dashed curve). In all three cases, the
first two parent stars are 0.6 M�, while the third parent is 0.8 M�. The first
collision product results from case k.

the SPH data for almost all of the elements. One possibly important
difference is that the MMAS package slightly overmixes the core in
case 1, and, consequently, the central helium abundance is not quite
as high as in the SPH calculation. Another noteworthy difference
is that the Li6 profile, especially in case 1, is not well represented
near the surface. Because Li6 exists in an even thinner shell at the
surface of the 0.8-M� star than does Li7 and Be9, its abundance
profile in the product is particularly sensitive to the mass-loss distri-
bution during the collisions. Note that MMAS does correctly predict
that most Li6 is ejected during the collisions. Furthermore, the abun-

Figure 15. Chemical abundance profiles, as determined by SPH calcula-
tions, for the final collision product for three scenarios that differ only in the
periastron separation rp,2 of the second collision: cases 10 (solid curve), 17
(dotted curve) and 20 (dashed curve).

Figure 16. Structural profiles, as determined by SPH calculations, for the
final collision product for three scenarios that differ only in the periastron
separation rp,2 of the second collision: cases 10 (solid curve), 17 (dotted
curve) and 20 (dashed curve).

dance profiles generated by MMAS much more closely resemble the
SPH results than our zeroth-order model does (see Fig. 3), indicating
that MMAS is capturing the important effects of mass loss and shock
heating.

In scenarios such as cases 1 and 2 for which the final product is
non-rotating, it is straightforward to obtain the enclosed mass m and
density ρ profiles from the A profile by integrating the equation of
hydrostatic equilibrium (see Section 2.2). Fig. 18 shows the resulting
structure of the final collision products. The kink in the A profile a
little inside r = 0.1 R� marks the boundary within which fluid from
only the 0.8-M� star contributes, and MMAS reproduces this feature
quite well. The central density of the SPH model is slightly less than
that of the MMAS model, mostly due to how density is calculated as
a smoothed average in SPH. Despite this difference, the overall
structure of the collision product is extremely well reproduced by
MMAS.

Fig. 19 compares the chemical composition profiles for SPH and
MMAS data for case 4, a situation in which both collisions are off-axis.
The most noticeable discrepancies are that MMAS again slightly over-
mixes the core and underestimates the surface Li6 abundance. Nev-
ertheless, the chemical abundance profiles produced by the MMAS

package and the SPH code are extremely similar. For example, MMAS

correctly reproduces the C13 abundance, with three peaks each cor-
responding to a different parent star. The inner peak is due to the
low-A fluid from the 0.6-M� star involved in only the second col-
lision, the middle peak represents fluid from the other 0.6-M� star,
and the outer peak represents high-A fluid from the 0.8-M� parent
(see Fig. 20). Note that this feature is reproducible by MMAS only
because it accounts for shock heating in each collision (compare
with our zeroth-order model of Fig. 3, in which there are only two
peaks in the C13 profile).

In many of the MMAS models, small kinks, or discontinuities, are
evident in some of the abundance profiles: such features mark lo-
cations outside of which an additional parent star either starts or
stops contributing. For example, in the case 5 and 6 collision prod-
uct, a kink exists in the C12 and C13 profiles near m/M = 0.08 (see
Fig. 21). As is evident from Fig. 22, fluid inside of the m/M ≈ 0.08
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Figure 17. Chemical abundance fractions by mass versus the enclosed mass fraction m/M in the final collision product for (a) case 1 and (b) case 2. Results
both from an SPH simulation (dotted curve) and from the MMAS software package (solid curve) are shown. In each case, both collisions are head-on.

Figure 18. Structure profiles as a function of radius r in the final collision product for (a) case 1 and (b) case 2. Results both from an SPH simulation (dotted
curve) and from the MMAS software package (solid curve) are shown. In each case, the final collision product is non-rotating.

shell originated solely in the 0.8-M� parent star. In the range m/M
� 0.08, all three parent stars contribute. The smoothing that is in-
herent to the SPH scheme makes it difficult to resolve such features
with our hydrodynamics code. It is possible that similarly abrupt
changes in abundance could occur in nature within real collision
products.

By comparing the SPH data within Fig. 21, as well as within
Fig. 22, we also see an example of the trend discussed in Sec-
tion 3.1.2. Namely, the direction of the rotation axis of the first
collision product (or equivalently the direction of approach of the
third parent) has little effect on the final collision product. Indeed,
when using MMAS, our approach is to neglect the rotation of the first

collision product completely, which is why the same MMAS model
applies to both cases 5 and 6.

Fig. 23 plots the entropic variable A versus the enclosed mass
fraction for the final collision products of cases 18–20, as determined
both by SPH and MMAS. Cases 18 and 19 differ only in the direction
of approach of the third star, and we again see that this variation has
little effect on the SPH results. The kink in all of the profiles slightly
inside m/M = 0.1 marks the boundary within which fluid from only
the 0.8-M� star contributes. MMAS again reproduces this feature
quite well. MMAS does underestimate the shock heating to the core
and hence the central value of A, although some of this discrepancy
is due to the spurious heating evident in longer SPH simulations
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Figure 19. Chemical abundance fraction by mass versus the enclosed mass
fraction m/M in the final collision product for both the MMAS (solid curve)
and the SPH (dotted curve) data of the case 4 collision product.

Figure 20. Fractional abundance of C13 versus the enclosed mass fraction
m/M in the final case 4 collision product, as determined both by MMAS

(solid curve) and by SPH (dotted curve). The top pane shows the total C13

abundance, while the bottom three panes show the contributions from each
individual parent star: C13

1 is the contribution from the 0.8-M� parent, C13
2

is the contribution from the 0.6-M� parent in the first collision and C13
3 is

the contribution from the 0.6-M� parent in the second collision.

(Lombardi et al. 1999). Nevertheless, it is likely that this difference
between the MMAS and SPH models would last only as a transient
during the thermal relaxation in a stellar evolution calculation. It
is also worth noting that, while the SPH calculations need to be
terminated before all of the bound fluid can settle into equilibrium
(see Section 2.1), the MMAS A profile does steadily increase outward
throughout the entire product.

3.2.2 Sizes of collision products

Unfortunately, it is a difficult task to determine the overall size of
a collision product, either with SPH simulations or with a package
such as MMAS. Whenever there is any mass loss in an SPH simula-
tion, there will also be SPH particles that are nearly unbound and,
in practice, still moving away from the product when the simulation
is terminated. These particles would ultimately form the outermost
layers of the collision product, but it would take an utterly infeasi-
ble amount of time to wait for them to come back and settle into
equilibrium.

The entropic variable A profile produced by MMAS seems quite
reasonable, both because it increases all the way out to the surface
and because the SPH results tend to approach its form as more of
the fluid settles into equilibrium. However, there are no simulation
data to compare against for the very outermost layers of a product
and so the exact form of the profile there is difficult to validate. Not
surprisingly, the radius of the collision product is rather sensitive
to the A profile. For example, simply by changing the parameter c3

from −1.0 to the still very reasonable value of −1.1, which tends
to distribute slightly more shock heating to the outer layers (see
Lombardi et al. 2002), the radii of our MMAS final collision product
models for case 1 and for case 2 increase by about a factor of 2.
Despite such uncertainties, it is still interesting to obtain a crude es-
timate of the sizes of the collision products immediately from MMAS.
In making these estimates, we do not account for the expansion due
to rotation, but instead simply integrate the equation of hydrostatic
equilibrium for a non-rotating star with the same A profile, using
the outer boundary condition that the pressure vanishes. The radii
calculated therefore represent the sizes that the products would have
if some mechanism were to brake their rotation without disturbing
their A profiles.

Fig. 24 plots the radii at various enclosed mass fractions for prod-
ucts generated in single–single star collisions involving 0.4-, 0.6-
and 0.8-M� parent stars, as determined by MMAS. These radii are
plotted against the normalized periastron separation r p/(R1 + R2),
which we allow to exceed unity slightly to account for bulges in the
parent stars. The general trend is that as the periastron separation
increases, the collisions are more long-lived, there is more shock
heating, and the radii of the collision products increase. Because
the fluid in the deep interior of the product is largely shielded from
shocks, the A profile there, and hence the radius r profile, are not
too strongly dependent on the periastron separation of the collision.
As a result, the radii versus periastron separation curves of Fig. 24
become closer to horizontal as one looks to a smaller enclosed mass
fraction. For the cases examined in Fig. 24, the full (100 per cent
enclosed mass) radius of the collision product is always at least
about twice the sum of the radii of the parent stars, and often even
much larger than this. For example, if two 0.8-M� stars suffer a
grazing (r p ≈ R1 + R2) collision, the collision product then has a
full radius of about 40 R�, about 20 times larger than the sum R1 +
R2 of the parent star radii. We therefore expect that the collisional
cross-section of these first products will be significantly enhanced
over that of their thermally relaxed counterparts.

Fig. 25 is similar to Fig. 24, but for triple-star collisions. We use
different line types to represent various normalized periastron sepa-
rations r p/(R1 + R2) for the first collision, and along the horizontal
axis we vary the normalized periastron of the second collision. The
curves give the radii at three different enclosed mass fractions. For
each of the six r p values in a frame of Fig. 25, we performed a
nested loop over 45 equally spaced values of the normalized peri-
astron separation for the second collision, from 0 to 1.1. Therefore,
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Figure 21. Chemical abundance fraction by mass versus the enclosed mass
fraction m/M in the final collision product for both the MMAS (solid curve)
and the SPH data of the case 5 (dotted curve) and case 6 (dashed curve)
collision products. Note that our MMAS results do not distinguish between
cases 5 and 6, as they differ only in the orientation of the spin of the first
product.

MMAS treated 270 different triple-star collisions (in a few minutes on
a Pentium IV workstation) for each of the four plots. Note that there
is a general trend for the radius of the collision product to increase
as the first periastron separation increases, as expected; this effect is
mild for the 50 per cent enclosed mass radius, and rather dramatic
for the full radius. Even more significant is the second periastron
separation, with grazing second collisions resulting in products that

Figure 22. Fractional contribution f i of each parent star i versus the en-
closed mass fraction m/M in the case 5 and 6 collision products, as deter-
mined both by MMAS (solid curve) and by SPH. The dotted curve corresponds
to the case 5 SPH results, while the dashed curve gives the case 6 SPH re-
sults. The same MMAS model is valid for both cases, as they differ only in
the direction of the rotation axis of the first product. The i = 1 and 2 parents
are 0.6 M�, while the i = 3 parent is 0.8 M�.

are substantially larger than those from head-on collisions: the shock
heating suffered by the already diffuse outer layers of the first col-
lision product is severe when multiple pericentre passages occur
before merger. Once r p,2 grows large enough for the initial impact
of the third star to be outside of the core of the first product, so that
more than one pericentre passage would result before merger, then
the shock heating is no longer as sensitive to r p,2 and the full radius
surfaces in Fig. 25 tend to plateau. How strongly the full radius
varies with r p,2 therefore depends on the mass distribution within
the first product. For first products with a more uniform density,
such as in the product of two 0.4-M� stars, the final product size
increases more gradually and consistently with r p,2.

As the mass of any one of the three parent stars is increased, the
trend is for the radius of the collision product to increase as well. For
example, Fig. 25(a) shows that for collisions in which two 0.6-M�
stars collide and then a 0.8-M� star collides with the first product,
the final collision product radius does not exceed a few times 103

R�. If one of the 0.6-M� stars is substituted with a 0.8-M� star,
then the final radius can be as large as about 106 R� (see Fig. 25b).
This extreme size is due to the phenomenally diffuse outer layers
of the product: the average density of such a star is only ∼10−18 g
cm−3. The noise visible on some of the full radius curves is due to
approaching the limiting numerical precision during the structure
integration in these diffuse regions.

From Fig. 25 we see that the radius that encloses 95 per cent
of the total mass, while still large, is often orders of magnitude
smaller than the full radius of the final product. Because of the low
densities involved, the full radius calculated is rather sensitive to
the details of the shock heating during the collision. Changing the
MMAS parameter c3 from −1.0 to −1.1, for example, can increase
the full radius by a factor of a few, although the radius enclosing
50 per cent of the total mass does not change by more than a few
per cent. Nevertheless, any reasonable form and amount of shock
heating yields products that are significantly larger than a thermally
relaxed star with the same mass and composition.

Colliding the same three parent stars in a different order does
not drastically affect the mass of the final product, although it does
significantly affect its size. Consider, for example, Figs 25(c) and (d).
If two 0.4-M� stars collide and then the resulting product collides
with a 0.8-M� star, the final product typically has a radius of the
order of ∼10–100 R�, but if the 0.8-M� star is switched into the
first collision instead, the final radius is usually in the range from
∼100 to 106 R�. The primary reason for this difference is that a
collision between the 0.4- and 0.8-M� stars yields a product with
especially diffuse outer layers, and, as a result, is subject to a larger
number of passages and hence more shock heating during a second
collision.

4 D I S C U S S I O N

4.1 Concluding remarks

We have used SPH and the software package MMAS to study triple-
star collisions. Although such collisions span a tremendous amount
of parameter space, our modest number of SPH calculations do
provide some valuable insights. For the (parabolic) encounters that
we consider, we find that the order in which stars collide (see Sec-
tion 3.1.1), the angle of approach of the third star (Section 3.1.2)
and the periastron separation of the collisions (Section 3.1.3) have
only a slight effect on the chemical composition distribution within
the final collision product. The order and orbital parameters of the
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Figure 23. Entropic variable A as a function of enclosed mass fraction m/M in representative final collision products. In frame (a), the same MMAS model
(solid curve) is compared against our SPH models for cases 18 (dotted curve) and 19 (dashed curve): our implementation of MMAS does not distinguish between
these cases, as they differ only in the orientation of the rotation axis of the first collision product. In frame (b), the MMAS (solid curve) and SPH (dashed curve)
results are compared for case 20. The MMAS profiles have the same qualitative form as the SPH results, except in the outer ∼10 per cent of the bound mass
where the SPH models have not settled into equilibrium.

Figure 24. As a function of the normalized periastron separation rp/(R1 + R2), each pane shows the radius R′ that encloses, from the top curve to the bottom
one, 100, 99, 95, 86 and 50 per cent of the total bound mass of the collision product, on a logarithmic scale and as determined by MMAS. The scale on the left
gives the radius in solar units, while the scale on the right normalizes the radius to the sum of the parent star radii. The combination of parent stars considered
are: (a) 0.8 and 0.8 M�, (b) 0.6 and 0.6 M�, (c) 0.4 and 0.4 M�, (d) 0.8 and 0.6 M�, (e) 0.8 and 0.4 M� and (f) 0.6 and 0.4 M�.

collisions can, however, significantly affect the size and structure of
the product.

The results of Section 3.2.1 help to establish that the simple fluid
sorting algorithm of MMAS reproduces the important features of our

SPH models, even when one of the parent stars is itself a colli-
sion product. The MMAS package can therefore be considered an
adequate, if not an accurate, substitute for a hydrodynamics code
in many situations. This realization will help simplify the process
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Figure 25. We plot various radii R′ of the final collision product (as determined by MMAS) as a function of the periastron separation of the second
collision, normalized to a sum of the radii of the colliding stars. The radius R′

1⊕2 of the first collision product is the 100 per cent radius from
Fig. 24 corresponding to various normalized periastron separations for the first collision: rp,1/(R1 + R2) = 0 (solid curve), 0.2 (dotted curve), 0.4 (short-dashed
curve), 0.6 (long-dashed curve), 0.8 (dotted short-dashed curve) and 1.0 (dotted long-dashed curve). There are three curves of each line type: the bottom one
corresponds to the radius enclosing 50 per cent of the final bound mass, the middle one corresponds to the 95 per cent radius and the top one to the 100 per
cent radius.

of generating collision product models in cluster simulations, be-
cause a full hydrodynamics calculation will not necessarily need to
be run for each collision. Indeed, we hope the MMAS package will
be used to help account for stellar collisions in dynamics simula-
tions of globular clusters. Toward this end, MMAS is already being
incorporated into two software packages, TRIPTYCH and TRIPLETYCH,
that, respectively, treat encounters between two stars and among
three stars (see Sills et al. 2003).3 These packages are controlled
through a web interface and treat the orbital trajectories, possible
merger(s) and evolution of the merger product and therefore in-

3 http://faculty.vassar.edu/lombardi/triptych/ and http://faculty.vassar.edu/
lombardi/tripletych/

corporate three main branches of stellar astrophysics: dynamics,
hydrodynamics and evolution.

The product size estimates of Section 3.2.2 are admittedly crude.
For example, partial ionization and radiation pressure are neglected.
Although the exact size of a collision product is difficult to de-
termine, our calculations indicate that the first and final collision
products are always significantly larger than their thermally relaxed
counterparts would be. Indeed, according to our MMAS calculations
in Section 3.2.2, the final collision product can have a radius of up to
∼106 R�, easily exceeding the size of a typical red giant. Further-
more, these calculations have assumed that some mechanism has
braked the often rapid rotation of the products, so any rotation that
does remain will only further enhance the size of the products. The
extended sizes of the products will increase the multistar collision
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rate over that calculated in previous treatments of binary–single and
binary–binary encounters.

All of the scenarios we consider with SPH in this paper involve
one 0.8- and two 0.6-M� stars. Without shock heating, the low-A
fluid of the 0.8-M� star would sink to the core of the final collision
product, while the high-A portions of the 0.8-M� star would settle
in the outer layers. The intermediate layers of the product would
consist of fluid with the same A range from all the parents. Simply
sorting the fluid in this way, without running a hydrodynamics cal-
culation, can therefore provide a zeroth-order model of the collision
product that captures some of its important qualitative features (see
Fig. 3).

However, non-uniform shock heating during the collisions some-
what alters the relative values of the entropic variable A in the fluid,
resulting in a slightly different sorting pattern. Because the amount
and distribution of shock heating are dependent on the details of a
collision, the sorting of the fluid varies with, for example, the order in
which the stars collide. Shock heating can have larger consequences
on the chemical abundance profiles of elements, such as C13, that
exist in substantial amounts only in a small shell in the initial parent
stars. However, the chemical abundance profiles of most elements,
particularly helium, are always qualitatively the same, regardless of
how the three stars are merged. Because the abundance and distri-
bution of helium (and hence hydrogen) is one of the most important
factors in determining the subsequent course of stellar evolution
of the collision product, we believe that the order and geometry
of the collisions will not significantly affect the stellar evolution of
the product. Indeed, Sills et al. (2002) have recently presented a set
of stellar evolution calculations for a collision product for which
the starting YREC models were generated from SPH calculations of
different resolutions. The variations in the initial helium profiles of
their models are roughly comparable to those in our helium pro-
files resulting from colliding three parent stars in different ways.
Although Sills et al. (2002) do find detailed differences in the evo-
lution, especially during the ‘pre-main-sequence’ contraction, the
evolutionary tracks and time-scales are quite similar. We therefore
feel that, for low-velocity collisions, the hydrodynamical details of
how three stars are merged will not significantly affect the stellar
evolution of the collision product – the major caveat here being that
the geometry of the collisions can of course affect the rotation of
the product, which in turn can greatly affect its evolution (Sills et al.
2001).

Surface abundances of lithium and beryllium are particularly
interesting to monitor, as these elements can be used as observa-
tional indicators of mixing and perhaps collisional history. As in the
single–single star collisions presented by Lombardi et al. (2002), we
find that the triple-star mergers presented here yield collision prod-
ucts that are severely depleted of lithium and somewhat of beryllium
at the surface. Even in the relatively gentle (parabolic) cases that we
have considered, the collisions are energetic enough to expel most
of the lithium and beryllium from the outer layers of the parents.

4.2 Future work

There are many scenarios to explore when dealing with collisions in
environments as chaotic as dense stellar systems. Different orbital
geometries besides the parabolic trajectories treated in this paper
still need to be considered in more detail. Large stellar velocities
in galactic nuclei lead to hyperbolic collisions. In globular clusters,
perturbations to a binary can lead to an elliptical collision, while an
encounter with a very hard binary can lead to significantly hyper-
bolic collisions.

Future studies may want to include a more detailed look at the
hydrodynamics during grazing encounters, which could be done
efficiently with the help of GRAPE (short for GRAvity PipE)
special-purpose hardware for calculating the self-gravity of the
system. Furthermore, encounters involving more than three stars,
such as in binary–binary interactions, may also warrant further ex-
amination: for example, the final collision product generated in a
triple-star merger is typically so extended that it could immediately
start suffering Roche lobe overflow if left in orbit around a fourth
star.

Collisions among a larger variety of stellar types and masses,
reflective of the diverse populations of clusters, will also need
to be explored. We have been concentrating on low-mass main-
sequence stars, but collisions between high-mass main-sequence
stars in young compact star clusters, or giants located in the dense
cores of globular clusters, for example, are frequent. A logical first
step would be to examine high-mass main-sequence stars in a run-
away merger scenario. It would therefore be very useful to develop
a generalization of the fluid sorting method that includes radiation
pressure in the equation of state.

As a result of shock heating during the collision, the product
is much larger than a thermally equilibrated main-sequence star
of the same mass. How much of an effect this increased radius
has on the effective cross-section for merger is subject to many
variables, including the structure of the outer layers of the product
and the velocity of approaching stars. In environments such as active
galactic nuclei, where relative velocities tend to be high, the low-
density outer layers of a newly formed collision product could likely
get stripped by passing stars. However, in globular clusters, where
stellar velocities tend to be small, collisions with even low-density
envelopes may lead to significantly increased rates of merger. It
would be useful to develop a robust collision module that could
quickly predict whether any given collision trajectory will lead to
a merger, and, if not, describe how the stars are affected by the
interaction.

One simple approximation often implemented in cluster simula-
tions is that a collision product instantaneously achieves its ther-
mally relaxed radius, a good approximation when the time between
collisions is much longer than the thermal time-scale. Arguing in-
stead that the global thermal time-scale of the first product can be
much larger than the time between collisions in interactions in-
volving binaries, we make a different approximation in this pa-
per, namely that the radius of the first product (and more generally
its structure) does not evolve substantially between collisions. Fu-
ture scattering experiments could model thermally relaxing stars
and study more carefully the time-scale between collisions medi-
ated by binaries. The thermal time-scale in the outer layers of a
collision product can be orders of magnitude less than its global
thermal time-scale (see table 1 of Sills et al. 1997), so that it may
actually be necessary to follow the thermal contraction and stel-
lar orbits simultaneously. Indeed, in the extremely low-density lay-
ers of a collision product, it is even possible for the thermal time-
scale to be comparable to the (hydro)dynamical time-scale, so that
the product could undergo significant thermal contraction even be-
fore it reaches hydrodynamical equilibrium. It would be helpful if
future stellar evolution calculations of collision products included a
detailed description of the size and structure of the products through-
out the thermal relaxation stage. How quickly the outer layers of
the thermally expanded product change with time will substantially
affect its likelihood of subsequent collisions. Initial conditions for
such stellar evolution calculations could be provided by the publicly
available MMAS package.
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The primary hurdle for incorporating collisions into realistic stel-
lar dynamics simulations is currently the stellar evolution of the
collision products. Such stars are highly non-canonical, typically
with very peculiar structural and composition profiles, and present
a challenging set of initial conditions for stellar evolution codes. To
make matters even more intricate, rotation, which is typically rapid
after merging, will affect the structural properties and chemical com-
positions of the stars as they evolve (e.g. Sills et al. 2001). This rapid
rotation also has the effect of ejecting mass as the product thermally
contracts. Studying this emitted mass will be worthwhile, as it may
probably carry away angular momentum and at least partially brake
rotating collision products.
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